Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучение случайное

    Задача 9.9. В сосуде с жидкостью размещены источник ультразвука и биологический препарат. Ультразвук распространяется во все стороны, на биологический препарат попадает небольшая часть излучения, идущая по прямой линии источник — препарат . Да еще некоторая часть колебаний, случайно отраженных от стен сосуда. Как повысить эффективность установки  [c.171]

    В 1896 г. Анри Беккерель (1852-1908) случайно обнаружил, что урановые соли испускают излучение, проникающее через обертку из черной бумаги, в которой находились фотографические пластинки, и вызывающее [c.329]


    Передача тепла в теплообменниках происходит в основном за счет проводимости и конвекции, так как при существующих температурах тепловое излучение незначительно. Проводимость — основной механизм передачи тепла в твердых телах. Он заключается главным образом в передаче энергии при прохождении одного слоя молекул вдоль другого слоя и обмена между ними кинетической энергией. Конвекция имеет место только в потоках и заключается в реальном перемещении молекул с одного места па другое. Свободная конвекция возникает при естественном случайном движении, а принудительная является результ атом принудительного движения молекул, которое имеет место только при наличии потоков. [c.167]

    Уравнения для броуновского движения дисперсных частиц решаются в предположении отсутствия столкновений их друг с другом. Все входящие в формулы для смещения и угла поворота величины являются либо постоянными, либо измеряемыми экспериментально. Поэтому появляется возможность определения размеров частиц. В работе [86] рассмотрен случай воздействия на броуновскую частицу дополнительной случайной силы, связанной с существованием равновесного электромагнитного излучения. Эта сила проявляется в случае наличия заряда у частицы. В силу статистической независимости действующих сил коэффициенты трения, связанные с ними, будут складываться. Это открывает дополнительные возможности анализа броуновского движения и определения характеристик дисперсных систем. [c.94]

    Поскольку значения скорости света, частоты возбуждающего излучения и показателей преломления известны с высокой точностью, то относительная ошибка в определении скорости зависит сгг точности определения угла рассеяния и от случайных ошибок при измерении положения компонент МБ. В разных экспериментах в зависимости от условий погрешность определения ц составляла от 0,5% (вдали от критической точки) до 2% (в окрестности критической точки). [c.18]

    Светорассеивающий прибор содержит в качестве источника света лампу со средним или высоким давлением ртутных паров, которая дает параллельный монохроматический луч с помощью стеклянных монохроматических фильтров. Такой луч проходит через поляризатор и попадает на ячейку с образцом. Интенсивность рассеянного излучения измеряется при различных углах фотоумножителем, и результаты регистрируются высокочувствительным гальванометром или записывающей лентой. Весь прибор заключен в светонепроницаемый ящик. Кроме того, он снабжен световой ловушкой для поглощения луча, выходящего из ячейки с образцом, с тем, чтобы исключить случайное попадание света из фотоумножителя. Все внутренние поверхности приборов не должны отражать свет, а пыль необходимо полностью удалять. [c.151]


    В современных приборах случайное излучение составляет по энергии 0,3—0,5% от основного излучения и проявляется только у нижнего УФ-предела и верхнего ИК-пре-дела спектрофотометров. Интенсивность случайных световых лучей можно измерить при помощи фильтра, который задерживает световые лучи с длиной волны, характерной для исследуемой области, но пропускает все остальные. Такими фильтрами для коротковолновой области прибора может быть-слой 0,05 М КОН толщиной 10 мм и для ИК конечной области — пленка полистирола толщиной 0,2 мм. [c.21]

    Большинство веществ сильно поглощает вблизи 200 нм, но прозрачно для случайного света. Это при>водит к появлению в коротковолновой области ложных максимумов, обусловленных пропусканием и регистрацией случайного света. При данной длине волны ошибка, вызываемая таким излучением, увеличивается тем значительнее, чем сильнее поглощает растворитель. Например, если случайное излучение составляет 0,5% от общего излучения, а пропускание световых лучей через растворитель 10%, то ошибка будет 5%. [c.21]

    Если стандартное вещество поглощает случайное излучение меньше, чем исследуемое, наблюдаемое пропускание будет больше, а поглощение меньше действительных величин. Ошибка растет вместе с увеличением поглощения образца. Чтобы уменьшить ошибки, необходимо работать с малыми поглощениями, например, использовать кювету с меньшей оптической длиной пути или растворитель с меньшим поглощением. [c.21]

    Но что же такое неполяризованный (естественный) свет Процесс излучения отдельным атомом длится 10- с, и когда отдельные атомы излучают свет с разной поляризацией, поляризация пучка света будет меняться случайным образом примерно через каждые 10 с. Когда поляризация света изменяется столь быстро, что ее невозможно измерить, то при этом наблюдается неполяризованный свет, в котором все эффекты поляризации через усреднение сводятся к нулю. Первой задачей в изучении влияния вещества на поляризацию проходящего света является выделение из естественного света излучения с определенной поляризацией. [c.34]

    Распространенной ошибкой является компенсация поглощения растворителя в области его очень интенсивных полос (например, 700—840 см для четыреххлористого углерода). В этих областях спектра излучение полностью поглощается веществом как в кювете сравнения, так и в кювете с образцом и не попадает на детектор. Перо самописца при этом может регистрировать полосы, которые возникают из-за случайных электронных флуктуаций в приборе и не имеют никакого отношения к исследуемому веп еству. [c.207]

    Особенности аэрозолей заключаются в том, что из-за низкой вязкости воздуха седиментация и диффузия частиц аэрозоля протекают очень быстро. Кроме того, дымы и туманы легко переносятся ветром, что используют для создания дымовых завес, окуривания и опрыскивания сельскохозяйственных культур. Электрические свойства аэрозолей чрезвычайно сильно отличаются от электрических свойств систем с жидкой средой, что объясняется резким различием плотностей и диэлектрических свойств газов и жидкостей. В газовой среде отсутствуют электролитическая диссоциация и ДЭС. Однако частицы в аэрозолях имеют электрические заряды, которые возникают при случайных столкновениях частиц друг с другом или с какой-нибудь поверхностью. Возможна также адсорбция ионов, образующихся при ионизации газов под действием космических, ультрафиолетовых и радиоактивных излучений. Для аэрозолей характерна крайняя агрегативная неустойчивость. Их длительное существование связано с высокой дисперсностью и малой концентрацией. Это значит, что устойчивость аэрозолей является лишь кинетической, термодинамические факторы устойчивости отсутствуют. [c.447]

    Полимеры с высокой теплотой полимеризации, малым выходом мономера при пиролизе, не имеющие четвертичных атомов углерода в цепи, при действии излучений в основном сшиваются (полиэтилен, полистирол, полиизопрен, полибутадиен, полиметилакрилат и др.). Разрывы цепей при облучении происходят по случайному закону, а число разрывов или сшивок пропорционально дозе облучения и не зависит от его интенсивности. [c.246]

    В настоящее время твердо установлено, что не только металлы, но каждый элемент в определенных условиях излучает свет с постоянным спектром. Источником излучения являются нейтральные или ионизированные атомы, так как различные соединения одного и того же элемента дают одинаковый спектр. Отдельные линии в спектре различных элементов могут случайно совпадать, но в целом спектр каждого элемента является его постоянной и строго индивидуальной характеристикой. Это и позволяет использовать спектры для анализа веществ. [c.28]

    Эти штативы (рис. 90) снабжены кожухом, который обеспечивает защиту от распространения радиопомех, излучаемых раз-рядом, а также защищает работающего от излучения разряда и случайного поражения током. Дверцы штатива связаны с блокирующей кнопкой, которая размыкает цепь катушки магнитного пускателя генератора. Держатели электродов смонтированы на дверцах штатива. Проверку [c.128]


    Переходя к следующему уровню организации, необходимо рассмотреть с и с т е м ы, состоящие из центрального ядра и частиц в поле ядра. Это — атомы, привлекающие внимание химиков в гораздо большей степени, чем частицы в ящиках. Однако и в атомах устойчивость есть следствие ограничений, налагаемых на движение частиц. Из элементарного курса химии известно, что энергетические уровни, отвечающие стационарным состояниям атомной системы, дискретны и переходы между ними связаны с излучением или поглощением кванта энергии. Атомы, следовательно, тоже защищены от случайных влияний. Это относится и к еще более организованным системам — молекул и твердых кристаллических тел. Но по мере усложнения систем появляются новые факторы, роль которых незаметна на низших уровнях. Обмен энергией или массой зависит от геометрического соответствия между реагирующими молекулами, от распределения электронной плотности в пределах молекулы, наличия экранирующих групп и т. п. Возникает вопрос, в какой мере можно распространить принцип защиты на сложные системы. Можно ли утверждать, что в таких системах любые, даже слабые внешние возмущения или химические влияния поведут к развитию процесса, итогом которого будет глубокая перестройка системы  [c.51]

    В любом спектрофотометре к монохроматическому излучению, падающему на детектор, примешивается случайный свет с совершенно отличными длинами волн. Это и свет, проходящий через щели корпуса прибора, и свет от рассеяния на пылинках, осевших на различных частях монохроматора, и т. п. Для наиболее полного отделения монохроматического излучения от случайного используются двойные монохроматоры. [c.21]

    Следует также вводить поправку на случайный свет. Для определения ее необходимо измерить эффективное количество случайного света с кюветы образца и сравнения. Так как кювета образца может поглощать случайный свет, а кювета сравнения — исследуемое излучение, то поправка на случайный свет будет либо больше, либо меньше, чем в отсутствие данных кювет. Кюветы образца и сравнения ставятся на свои места, а в канал образца дополнительно вводится фильтр для измерения интенсивности случайного света. Полученное пропускание и есть эффективная часть случайного света. Эта величина должна быть вычтена из наблюдаемого пропускания образца для нахождения действительной величины. [c.23]

    Вынужденная люминесценция, которую мы рассмотрели выше, характеризуется конечным спонтанным излучением, которое является некогерентным, т. е. оно случайно не только по времени, но и по основным характеристикам фазе, поляризации, направлению распространения. [c.434]

    Анализ отказов показывает, что при длительной непрерывной эксплуатации (свыше 10 тыс. ч) отказы не случайны, они закономерны (детерминированы) и обусловлены постепенным изменением характеристик как активных, так и пассивных элементов прибора под воздействием эксплуатационных факторов (температуры, давления, влаги, излучения, электронагрузки и др.). [c.532]

    Кроме поглощения и вынужденного испускания в теории излучения рассматривается третий процесс — спонтанное излучение. В этом случае возбужденная частица теряет энергию, достигая более низкого уровня, в отсутствие излучения. Спонтанное излучение — случайный процесс, и скорость дезактивации возбужденных частиц за счет спонтанного излучения (при статистически большом числе возбужденных частиц) является величиной первого порядка. Таким образом, константа скорости первого порядка может быть использована для описания интенсивности спонтанного излучения эта константа является коэффициентом Эйнштейна Л (Ami), который для спонтанного процесса играет ту же роль, что и константа второго тюрядка В для индуцированных процессов. Скорость спонтанного излучения равна Aminm, и интенсивность спонтанного излучения может быть использована для расчета Пт, если Ami известен. Большинство явлений, связанных с испусканием, которые изучаются в фотохимии, — флуоресценция, фосфоресценция и хемилюминесценция — обычно являются спонтанными, и в дальнейшем мы будем опускать это прилагательное. Если же испускание вынужденное, этот факт будет отмечаться особо. [c.30]

    В количественном эмиссионно-спектральном анализе почернение Зг, измеряемое для анализируемой линии, соо гносят с почернением линии основного металла Зд. При этом уменьшаются случайные колебания, вызываемые, например, такими факторами, как неправильное положение источника излучения. Случайные колебания [c.42]

    Окончательный результат можно получить двумя путями. В первом случае необходимо записать в качестве добавки к коэффициенту переноса излучения i — / доли а от имеющейся в луче энергии перед его взаимодействием со стенкой. Оставшуюся энергию припишем отраженному лучу. (Когда энергия отраженного луча станет ниже выбранного минимального значения, всю ее можно отнести к оставшейся энергии в луче.) В другом случас генерируется случайное число Р. Если оно меньше или равно а, вся имеющаяся энергия поглощается. Если оно больше а, вся энергия отражается. Для построения хода луча после отражения необходимо найти направление отраженного луча. При зеркальном отражении воспользуемся уравнениями (111), (112) и (113) 2.9.2. При полностью диффузном отражении генерируются два новых случайных числа угол 0 относительно нормали п равен sin 4 Рх а угол ф относительно х равен 2кР . В случае не полностью диффузного отражения углы 0 и ф определяются таким же образом, однако массовые множители для каждого луча необходимо делить на направленную отражательную способность и М1южить на двунаправленную отражательную способность для выбранного направления. Вместо этого можно воспользоваться функциями вида (8) при некотором удорожании анализа и времени программирования. [c.479]

    Включс1М1е модели [23] в метод Монте-Карло проводится в следующем порядке. Каждая поверхность параметризуется введением оптических констант п к к для граней и углом распределения наклонов (Х ,= 1/с. При желании можно зафиксировать к -=п и рассчитать полусферическую отражательную сн собность шероховатой поверхности, далее использовать измеренное зна-чепио этой величины, чтобы таким обра.зом установить пик для данного о- В [24[ предлагается находить о на основе дополнительных измерений пропускательной способности щелевого канала. Когда в методе Монте-Карло при построении хода луча встречается стенка с фиксированными оптическими константами и параметром шероховатости о, необходимо получить еще три числа из генератора случайных чисел. Первое, назовем его Р), необходимо для установления а при помощи предварительно рассчитанных и подготовленных таблиц, занесенных в память компьютера (таким же образом используются представленные в табл, 1 2.9,1 доли анергии интегрального излучения абсолютно черного тела для нахождения длины волны)  [c.483]

    Со времени открытия 5-минут1шх колебаний Солнца они интенсивно изучаются многими группами исследователей [42]. При наблюдениях период 5-минутных колебаний подвергается случайным флуктуациям в диапазоне примерно 3-7 мин. Такие кажущиеся флуктуации периода являются результатом интерференции большого числа колебаний разных частот со, с различшзш горизонтальным волновым числом К и различными амплитудами. Наблюдения с высоким пространственным и временным разрешением определили спектр мощности периодического сигнала в координатах К , ш в виде отчетливо разделенных полос. Наблюдаемые колебания захватывают лишь внешние слои конвективной зоны, но потенциально несут информацию о строении Солнца вплоть до ее нижней границы, которая определяется условием конвективной устойчивости. Собственные колебания Солнца с периодами 7-70 мин были зарегистрированы в периоды 41 мин в записях солнечного микроволнового излучения 50 мин в разности интенсивностей солнечного радиоизлучения на двух близких частотах при изучении более длинных записей этот период распался на два -около 57 и 33 мин в среднем поле скоростей в фотосфере были зарегистрированы колебания с периодом примерно 40 мин в доп-леровском смещении солнечной линии поглощения уста1ювлены колебания с периодами 58 и 40 мин в верхних слоях земной атмосферы с периодами 11,7 0,1 12,7 0,1 15,8 0,2 23,2 0,2 33 1 мин были обнаружены вариации потока гамма-квантов. Наиболее детальные результаты получены Хиллом и его коллегами [44]. [c.67]

    На рис. 42 представлены спектры, которые были полу-чены спектрографированием отдельных кристаллов 2п5 и 2п8 — Си-кристаллофосфора при помощи ультрафиолетового микроскопа. Мы видим, что эти спектры существенно отличаются друг от друга. В спектре чистого сульфида цинка фундаментальная полоса поглощения, не доходя до длин волн видимого света, круто спадает (рис. 42,а). В спектрах же кристаллофосфора, содержащего 0,01 и 0,1% меди, она наращивается, начиная с места обрыва, продолжается в области длинных волн и захватывает синий и зеленый участки спектра видимого излучения (рис. 42, б). Чистый сульфид цинка, в спектре поглощения которого нет волн видимого света, не люминесцирует. Полученный же на его основе твердый раствор, содержащий наряду с атомами цинка некоторое количество атомов меди, распределенных случайным образом среди атомов серы, спектр которых захватывает волны синего и зеленого света, представляет собой кристаллофосфор, испускающий сине-зеленое излучение, хотя и несколько более длинных волн. Ясно, что последний имеет и ную электронную конфигурацию, чем чистый сульфид цинка, а отсюда и иной энергетический спектр. [c.123]

    После включения лампы и усилителя в электрическую сеть следует 1) установить в кюветодержателе кюветы с раствором сравнения и испытуемыми образцами, поместить его в кюветное отделение 17 (см. рнс. 86) таким образом, чтобы на пути потока излучения находился раствор сравнения (кюветодержатель должен быть повернут точкой к оператору) закрепить его прижимом закрыть крышку кюветного отделения 2) установить рукояткой 16 в рабочее положение сурьмя-но-цезиевый-Ф (СФ-4А — рукоятка вдвинута) или кислородно-цезиевый-К (СФ-4 — рукоятка выдвинута) фотоэлемент 3) поставить переключатель 23 в положение выкл. и закрыть фотоэлемент, поставив шторку 24 в положение закр. 4) установить, вращая рукоятку 19, по шкале 29 требуемую длину волны, подводя ее со стороны малых значений. Если при этом случайно будет пройдено нужное значение, то следует возвратить шкалу к значению на 3—5 нм меньше требуемого и снова установить на соответствующее деление 5) установить рукоятку (диск) 10 держателя светофильтров на указатель нужного светофильтра (см. стр. 257) или воздух (СФ-4А — рукоятка вдвинута)  [c.266]

    Современные серийные спектрополяриметры имеют рабочую область от 185 до 700 нм. Блок-схема спектрополяриметра представлена на рис. 22. Источником света 1 служит мощная ксено-новая лампа с непрерывным спектром излучения. Для лучшей монохроматизации света и исключения случайного излучения применяются двойные монохроматоры 2. За монохроматором 2 расположен поляризатор 3, преобразующий естественный свет в плос-кополяризованный. Назначение модулятора 4 состоит в преобразовании света с постоянной плоскостью поляризации в свет с плоскостью поляризации, совершающей малые колебания около своего положения равновесия. Модуляции можно добиться или малыми механическими качаниями поляризатора, или помещением в пучок света попеременно пластинок из лево- и правовращающего кварца, или установлением ячейки Фарадея. (Ячейка Фарадея состоит из невращающего кварца и намотанного на него соленоида, по которому пропускается переменный ток. Под действием переменного тока кварц становится то лево-, то правовращающим.) Свет с модулированной поляризацией попадает на кювету 5 с образцом, а затем на анализатор 6. Анализатор 6 находится в скрещенном положении к поляризатору 3, т. е. пропускает лишь свет с поляризацией, перпендикулярной поляризации света, вышедшего из поляризатора 3. Наконец, свет падает на фотоумножитель 7 и усиливается резонансными усилителями 8. Усиленный сигнал подается на мотор, который вращает анализатор 6. [c.40]

    Флуоресцентные измерения обладают рядом преимуществ в сравнении с абсорбционными. В частности, оптическое поглощение промежуточного продукта, содержащегося в низкой концентрации, вызывает незначительное изменение относительно большой интенсивности зондирующего пучка. Шум , получающийся вследствие случайных флуктуаций интенсивности света, а также из-за статистической природы пучка фотонов, ограничивает чувствительность, достижимую в абсорбционном эксперименте. В люминесцентном эксперименте, напротив, нет излучения кроме того, которое испускается возбужденными соединениями. Статистические ограничения продолжают лимитировать точность, с которой могут измеряться концентрации, но достижимая на практике предельная чувствительность люминесцентного эксперимента обычно значительно выше, чем абсорбционного. По этой причине люминесценция часто используется для изучения веществ, первоначально находящихся в основном состоянии, путем специального оптического возбуждения их в более высокое люминесцентное состояние. В отдельных случаях описанные ранее линейчатые газооазоядные. лям-пы могут использоваться для возбуждения резонансной флуоресценции атомов (например, Н, О, С1) и радикалов (например, ОН). Поскольку флуоресценция изотропна, ее можно регистрировать под углом к направлению возбуждающего пучка. С большим успехом в качестве источника возбуждения можно использовать перестраиваемые лазеры. Лазеры обеспечивают существенно большую гибкость эксперимента, чем газоразрядные лампы. В частности, с их помощью можно возбуждать значительно большее число разнообразных молекулярных частиц (например, ОН, КОз, СН3О, С2Н5О). Более высокая мощность возбуждающего излучения от лазеров обеспечивает высокую чувствительность. Индуцированная лазером флуоресценция (ИЛФ) стала наиболее ценной методикой изучения промежуточных продуктов реакций в газовой фазе. При этом по- [c.196]

    Основной проблемой, связанной с измерением инфракрасного излучения очень малой интенсивности, являются тепловые шумы. При комнатной температуре идеальная поверхность излучает энергию порядка 0,05 Вт/см в диапазоне частот, достигающих 10 Гц. При таком малом потоке тепловые шумы, связанные со случайным характером излучения, ограничивают чувствительность приемника излучения. Поэтому вариации излучения меньшего уровня, чем случайные вариации шумов, однозначно интерн претировать не представляется возможным. [c.526]

    На рис. 38 приведены колебательные волновые функции для уровней и" — О, 1, 2, 4 и v"= О, соответствующие случаю б, изображенному на рис. 36 и 37. Качественно из рис. 38 следует, что интеграл перекрывания (101) достигает максимума для и = 2. Он будет меньше, но не равен нулю по обе стороны от максимума. Этот результат квантовомеханического рассмотрения вопроса отличается от того, что получается при использовании полу классического принципа Франка. Как видно из рис. 38, если, например, рассмотреть излучение из состояния с и = 2, то в распределении интенсивности в "-прогрессии будут два максимума. Аналогичная картина распределения интенсивности в -прогрессии будет иметь место и для других значений и (за исключением 0). В результате распределение интенсивности в таблице Деландра определяется параболической кривой, что хорошо иллюстрируется табл. 7 эта парабола называется параболой Кондона, Некоторые особые случаи довольно высокой интенсивности полос, могут быть легко объясненьЕ с помощью квантовой механики как связанные с случайным зна- [c.72]


Смотреть страницы где упоминается термин Излучение случайное: [c.39]    [c.465]    [c.8]    [c.500]    [c.40]    [c.191]    [c.337]    [c.183]    [c.177]    [c.156]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.130 ]




ПОИСК







© 2024 chem21.info Реклама на сайте