Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Напряжение электрического тока, измерение

    Развитие количественных методов анализа исторически тесно связано с созданием новой измерительной техники. Так, возможность разложения света в спектр обусловила появление разнообразных и чрезвычайно ценных оптических методов анализа, дальнейшая разработка которых продолжается и, в настоящее время. В свою очередь, применение этих методов в количественном анализе вызвало необходимость точных электрических способов измерения интенсивности светового потока. Изучение закономерностей электрических процессов и создание точных приборов для измерения силы тока и напряжения стало основой возникновения и развития электрохимических методов анализа. Затем появились термические методы, анализа, основанные на точном измерении температуры с помощью термоэлементов и термисторов, и радиохимические методы анализа, в которых осуществляется чувствительная регистрация радиоактивных излучений. [c.254]


    Напряжение электрического тока измеряют в вольтах (в). Прибором для измерения электродвижущей силы и электрического напряжения служит вольтметр. [c.129]

    Электрическая энергия определяется тремя факторами — напряжением, силой тока и временем его протекания. Единицы измерения электрической энергии по размерности совпадают с единицами измерения тепловой и механической энергии. Все 36 [c.36]

    Количество использованного тепла q равно расходу мощности Р (в тех же единицах измерения). Как известно, мощность электрического тока связана с напряжением U и сопротивлением R зависимостью  [c.367]

    Измерение э. д. с. Измерение э. д. с. элементов можно производить прн помощи компенсационной установки. Установка состоит из аккумулятора 1 — источника постоянного электрического тока напряжением 1,8 — 2,0 и нормального элемента Вестона 2, который представляет собой Н-образный стеклянный сосуд. В одном колене сосуда налита ртуть, на поверхность которой помещен слой иасты, состоящей из металлической ртути, сернокислой [c.219]

    Измерение температуры. Температуру измеряют термоэлектрическими приборами, принцип действия которых основан на свойстве спая двух разнородных металлов давать при нагревании электрическое напряжение (термоэлектричество). Две проволоки из разных металлов или различных сплавов спаивают концами вместе, свободные кон-ды соединяют с гальванометром— прибором, измеряющим малые напряжения электрического тока (рис. 32). [c.71]

    Сопротивление растеканию электрического тока для защитного заземления при питании от сетей с напряжением до 1000 В должно быть не более 4 Ом. Исправность защитного заземления станций катодной защиты проверяют контрольными измерениями и внешним осмотром при пуске станции в эксплуатацию. [c.156]

    Если взять два проводника из различных металлов (рис. Х1-3) и сварить их в точке 1, а к другим их концам 2 ж 3 присоединить с помощью проводов 4 милливольтметр 5 (прибор, служащий для измерения напряжения электрического тока), то при нагреве точки спая 1 в цепи возникнет электрический ток, вызываемый термоэлектродвижущей силой (т. э. д. с.). Величина т. э. д. с. зависит от материала проводников и от разности температур между точкой спая и неспаянными концами. Чем выше нагрев спая, тем сильнее отклонится стрелка милливольтметра, показывающая сразу искомую температуру, так как шкала его обычно градуируется в градусах Цельсия. - [c.411]


    Для испытания защитных свойств изоляционных покрытий на металлах в электролитах служит также ячейка, схема которой изображена на рис. 357. Оценку защитных свойств изоляционных покрытий и изменение этих свойств во времени проводят путем регистрации электрического тока, возникающего в паре между изолированным и неизолированным стальными образцами, при наложении на них напряжения Е. На изолированный образец накладывают или катодный, или анодный ток, а также испытывают образцы без воздействия на них тока, накладывая катодную поляризацию только в момент измерения. Появление тока в исследуемой паре дает время электролиту проникнуть к поверхности металла через поры и капилляры покрытия. Изменение тока во времени характеризует скорость разрушения изоляционного покрытия. [c.465]

    Приложенное напряжение ограничивается пробоем или искрением через слой частиц. Пробивная прочность слоев частиц обычно колеблется от нескольких тысяч В/м до 1000—20 000 кВ/м, причем последние являются более характерными. Так как ток через слой частиц обычно увеличивается несколько быстрее, чем прилагаемое напряжение, измеренное удельное сопротивление будет меньще при более высоких напряжениях. Поэтому измерение удельного сопротивления обычно проводят при напряжении, близком к пробойному, или, по крайней мере, при значениях, соответствующих напряженности электрического поля порядка нескольких киловольт на сантиметр. [c.466]

    Если же экспериментатор делает подряд все измерения для одного объекта, потом для другого и третьего, то результаты могут включать в себя ошибку, вызванную изменением внешних условий (температура, давление, освещенность и т. п.). Часто на численные значения измеряемых величин может накладываться медленное и плавное изменение (дрейф) характеристик прибора и изучаемой системы, вызванное изменением-температуры прибора и установки в целом, непостоянством напряжения электрических источников тока, влажностью воздуха и т. п. Желательно исключить или свести к минимуму эти влияния. [c.71]

    Тепловое значение калориметрической системы определяют, вводя в систему точно известное количество теплоты с помощью электрического тока. Для этого используют нагреватель 3, который питается током от стабилизатора напряжения У-1136 или аккумулятора. Нагреватель включают через два ключа К1 и Кг первый К1 служит для переключения стабилизатора на нагрузочное сопротивление или на цепь нагревателей калориметров, а второй служит для переключения питающего напряжения последовательно на одну или другую работающую установку. В цепь нагревателя 3 включен миллиамперметр для измерения силы тока, параллельно включен вольтметр для измерения напряжения на зажимах нагревателя. [c.397]

    В состав ДПР входят высокотемпературная камера ВК, являющаяся собственно ячейкой детектора, к которой присоединяется выход колонки, и выносной блок ВБ, содержащий ионизационную камеру ИК и сопротивления, участвующие в формировании электрического сигнала. Блок-схема, поясняющая включение детектора и измерение сигнала, приведена на рис. П.54. Блок питания осуществляет подачу стабильного постоянного отрицательного напряжения на один из электродов ионизационной камеры. Ионизационная камера, работая в режиме тока насыщения, формирует стабильный электрический ток в пределах (1,5 — 2,0)-10 А. При изменении концентрации анализируемого вещества в ячейке детектора ВК изменяется электрическое сопротивление и на входе резисторов й, и R[c.127]

    Сигнал рассогласования между и Гз моделируется так, как показано на рис. Х1-.5. Измеренное рассогласование передается управляющему элементу регулятора механически (посредством пружин и рычагов), электрически (в виде напряжения или тока) или пневматически (давлением сжатого воздуха). Сигнал рассогласования преобразуется управляющим элементом в регулирующее воздействие. [c.252]

    Если на электроды камеры подать напряжение, то в результате движения свободных электронов и ионов, создаваемых при ионизации газа, в камере возникает электрический ток. Этот ток между электродами камеры может быть измерен (рис. 28). Сила тока будет зависеть только от сечения ионизации молекул газа, если напряженность электрического поля исключает возможность как рекомбинации ионов с электронами, так и ионизации [c.137]

    При протекании в цепи с черной пленкой постоянного электрического тока она характеризуется лишь активной составляющей сопротивления (проводимостью). Сопротивление черных пленок при малых напряжениях обычно носит омический характер, т. е. ток в цепи линейно зависит от напряжения. Так как сопротивление обычных черных пленок высоко, то для измерения падения напряжения на них используют электрометру с высоким входным сопротивлением. Это требует тщательной экранировки всей электрической цепи и учета возможного вклада различных шунтирующих сопротивлений (сопротивления утечки), нанример, возникающих вследствие неплотного контакта углеводородной фазы и гидрофобной стенки, на отверстии которой образуется пленка. Типичная схема измерения сопротивления черной пленки по постоянному току приведена на рис. 19. [c.71]


    При измерении по этому методу необходимо заранее знать напряженность электрического поля необходимую для роста пленки при минимальной плотности тока, например 10 мкА/см , позволяющую производить наблюдение, и равновесный потенциал [c.194]

    Главная проблема, которую необходимо решить при конструировании ячеек - определение оптимального местоположения электродов. Как уже отмечалось выше, при электрохимических измерениях регистрируются изменяющиеся во времени электрический ток или разность потенциалов. Если через ячейку протекает большой ток или она имеет большое сопротивление, то измеряемая разность потенциалов будет зависеть от положения электрода сравнения относительно индикаторного электрода, поскольку ее величина включает в себя падение напряжения в объеме раствора /Лу между этими электродами. При этом следует иметь ввиду, что потенциал индикаторного электрода в дополнение к фактическому потенциалу включает в себя разности потенциалов, возникающие в солевом мостике, в том числе потенциалы жидкостного соединения обоих концов солевого мостика. Необходимо учесть также, что ве- [c.77]

    Практические измерения по определению опасности коррозии или эффективности катодной защиты являются преимущественно электрическими по своей природе. В принципе вопрос всегда сводится к измерению трех наиболее известных величин в электротехнике напряжения, силы тока и сопротивления. Определение потенциалов металлов в грунте или в растворах электролитов является измерением (не создающим нагрузки на цепь тока) падения напряжения между объектом и электродом сравнения, находящимися в среде с высоким сопротивлением (см. раздел 2.2). [c.81]

    Эксперимент проводили следующим образом. На никелевый диск и медный электрод, расположенный на дне тигля, подавали напряжение, которое обеспечивало режим предельного тока ( 7 = 0,65 в) и осуществляли измерение величины электрического тока, протекающего через диск. Такие измерения проводили с дисками раз- [c.57]

    Единицей измерения разности потенциальной энергии электронов в двух различных точках пространства является вольт. Для того чтобы между двумя точками пространства возник электрический ток, между ними должно существовать некоторое напряжение. Для определения напряжения электрического поля используется механический эквивалент потенциальной энергии, единицей измерения которого является джоуль эта единица энергии измеряется работой, которую необходимо выполнить, чтобы на пути длиной 1 м придать телу массой 1 кг ускорение 1 м/с . Вольт представляет собой напряжение между двумя точками электрического поля, при перемещении между которыми заряда в 1 Кл выполняется работа в [c.285]

    В воде. Калориметр подобного типа калибруется путем пропускания электрического тока через проволочный нагреватель с известным сопротивлением и перевода измеренной электрической энергии в тепловую энергию. Электрическая энергия, как указано выше, определяется произведением напряжения Е на силу тока I и время его протекания с, т. е. E l t. Поскольку, согласно закону Ома, Е = 1R, электрическая энергия, выделяющаяся в нагревателе с сопротивлением R за время f, должна быть равна Pkt. Например, при пропускании тока силой 0,5 А через сопротивление 50 Ом в течение 10 с, выделяется энергия [c.305]

    Наиболее прямой метод определения электрической подвижности состоит в измерении скорости перемещения границы раздела между двумя растворами электролитов в трубе постоянного поперечного сечения, через которую пропускается электрический ток. Например, если 0,1 М раствор хлористого калия налит в трубу над раствором хлористого кадмия, как показано на рис. 11.3, а, и через трубу пропускают электрический ток i, то ионы калия начнут двигаться вверх по направлению к отрицательному электроду, удаляясь от начальной границы раздела. Их будут сопровождать более медленно движущиеся ионы кадмия, так что в столбе электролита не возникнет разрыва. Поскольку концентрация ионов кадмия над первоначальной границей раздела ( d b) будет вообще отличаться от исходной, образуется зона изменения концентрации хлористого кадмия (на рис. 11.3,6 она заштрихована). Чтобы рассчитать электрическую подвижность ионов калия по скорости их движения в растворе КС1, необходимо знать напряженность электрического поля Е в растворе КС1. Напряженность электрического поля Е равна градиенту электрического потенциала ф со знаком минус. Если электрический потенциал изменяется только в направлении X, то [c.348]

    Метод квадратно-волновой полярографии впервые применили Баркер и Дженкинс [289]. Этот метод основан на наложении на электродный потенциал переменного напряжения квадратной формы малой амплитуды. Измерению подлежит переменная составляющая электролизного тока в зависимости от потенциала, который меняется, как и в обычной полярографии, линейно во времени. Для устранения емкостной составляющей переменного тока измерение производится в конце каждого полупериода тока, когда двойной электрический слой на поверхности электрода успевает приобрести новый электрический заряд. Согласно Баркеру и Дженкинсу [289], могут быть определены концентрации восстанавливающихся обратимо веществ порядка 2-10 М. Аналитическое применение метода описано в работах [398—401], а его теория — в работе [484]. [c.244]

    При компьютерной обработке результатов за искомое значение температуры можно принимать ее среднее значение по площади или выбранному участку объекта. Следует иметь в виду, что температура на поверхности фарфоровых покрышек определяется как нагревом обмотки вследствие прохождения электрического тока, так и диэлектрическими потерями в изоляции, которые характеризуются тангенсом угла потерь tg5. Для того, чтобы оценить вклад tg5, следует выполнить тепловизионные измерения без нагрузки, то есть при нахождении объекта только под рабочим напряжением. [c.300]

    Различают абсолютные коэффициенты Пельтье П и П<,. П, - это коэффициент, определение которого должно проводиться в изотермических условиях температура исследуемого спая должна быть одинаковой при прямом и обратном направлениях тока). Постоянство температуры следует обеспечивать при постоянном отношении плотностей электрического тока и теплового потока, что связано с дополнительными экспериментальными трудностями. Гораздо проще осуществляется измерение коэффициента Пельтье (Пг), при определении которого должны выполняться изоэлектрические условия напряжение на спае должно быть одинаковым при обоих направлениях тока). Измерение коэффициента П , предпочтительнее, чем измерение термоэлектрической способности S, так как величина П стремится к постоянному значению по мере приближения температуры к абсолютному нулю, тогда как величина S при тех же условиях стремится к нулю. Кроме того, по чисто практическим причинам измерение коэффициента П при низких температурах оказывается более точным. В дальнейщем, употребляя символ П при обозначении коэффициента Пельтье, будем иметь в виду величину П ,. [c.603]

    Процессу деполяризации на полярографической кривой соответствует увеличение тока при определенном напряжении, величина которого зависит от химической природы деполяризатора. При дальнейшем увеличении напряжения рост тока замедляется, он достигает максимального значения, после чего уже не меняется с ростом напряжения. Этот не зависящий от напряжения ток называется предельным, а участок кривой от начала увеличения тока до предельного значения называется полярографической волной. Высота волны соответствует величине предельного тока, измеренного от начала увеличения тока (способы измерения высоты волн см. в гл. VI, разд. 3). По мере увеличения тока деполяризатор в непосредственной близости от электрода расходуется пока его концентрация у поверхности электрода становится равной нулю при этом ток достигает предельного значения. Величина предельного тока определяется только скоростью подачи деполяризатора из раствора к поверхности электрода. Если деполяризатором являются электрически нейтральные молекулы, то такая подача осуществляется только путем диффузии. Предельные токи, величина которых определяется только диффузией, рассмотрены в гл. VI. [c.57]

    Условность разделения заключается в том, что электрические свойства пластмасс сильно зависят от внешних условий — температуры, влажности, степени ионизации окружающей среды, напряженности электрического поля, силы тока и других. При станд ти-зованных измерениях частота электромагнитного поля — 10 Гц, температура — 20 С, относительная влажность воздуха — 60 %. Образец имеет форму диска диаметром 100 мм. [c.150]

    Измерения удельных объемного и поверхностного сопротивлений проводят методом измерения токов, проходящих через образец (р или по поверхности образца (р при приложении к нему постоянного по напряжению электрического поля. [c.156]

    Измерение температуры термоэлектрическими приборами основано на свойстве сплава двух разнородных металлов давать нри нагревании электрическое напряжение (термоэлектричество). Возьмем две проволочки из разных металлов или из различных сплавов, спаяем одни концы этих проволочек вместе, а другие, свободные, соединим с гальванометром — прибором, измеряющим малые напряжения электрического тока (рис. 69). Есл теперь нагреть место спая, то стрелка гальвано- 69. Схема термоэлектри метра отклонится, что указывает на ческого пирометра, возникновение электрического тока различные металлы термопары  [c.121]

    Электрические методы измерения механических параметров. Для измерения механических параметров нпгроко используют электрические методы. Их преимущества — малая инерционность измерительных устройств, что особенно важно при изучении быстро протекающих процессов в машинах, высокая чувствительность, возможность дистанционного измерения, простота хранения и обработки информации. Система измерения в этом случае состоит из датчика, преобразующего измеряемый импульс в электрический сигнал, усилителя электрического сигнала (напряжения или силы тока), измерительного устройства, включающего регистрирующие приборы (различные самописцы или осциллографы). По нрннцину работы [c.20]

    Теоретические исследования поведения органических веществ в неводных растворах при наложении неоднородного электрического поля [117, 118] позволяют объяснить поведение частиц твердых углеводородов петролатума в таком поле. При сравнительно малых напряженностях электрического поля вследствие поляризации двойного слоя частицы движутся в область большего градиента потенциала. При увеличении напряженности, когда происходит поляризация материала частиц, возникает пондеромотор-наясила, которая изменяет направление частиц в зависимости от диэлектрической проницаемости дисперсной фазы и дисперсионной среды. Измерения при помощи моста переменного тока Р-570 на частоте 1000 Гц показали, что диэлектрическая проницаемость дисперсионной среды больше, чем дисперсной фазы (2,00 и 1,93 [c.189]

    Для определения электропроводности по методу ASTMD3114 отбирают не менее 1 л пробы топлива в канистру с эпоксидным покрытием или в стеклянную бутыль. Тару, предназначенную для отбора пробы топлива, тщательно подготавливают — промывают последовательно горячей водой, холодной дистиллированной водой, ацетоном, хлороформом, продувают сухим азотом, ополаскивают несколько раз исследуемым топливом и затем отбирают пробу. Хранить пробы топлива отобранные для измерения электропроводности, не рекомендуется. Основным узлом прибора для определения по методу ASTMD3114 является электродная ячейка. В стакан из нержавеющей стали емкостью 250 мл помещены цилиндрические электроды. Расстояние между стенкам электродов должно быть не менее 1 мм. Электропроводность топлива измеряют при напряженности электрического поля от 0,8 до 1,6 В/мм. Переключением клеммы на ячейку от батареи подается напряжение 1,5 В, и в этот момент на приборе фиксируется величина электрического тока, проходящего через ячейку. Электропроводность топлива рассчитывают по закону Ома  [c.130]

    При наладке катодной защиты. После окончания строительства i монтажа катодной защиты перед включением ее под напряжение тщательно лроверяют все элементы, производят измерение сопротивлений растекания анодного И защитных заземлений, переходного сопротивления защищаемое сооружение—земля, полного сопротивления цепи и полученные данные заносят в паспорт. Подают напряжение переменного тока на выпрямитель, включают нагрузку и, регулируя напряжение и ток источника защиты, устанавливают эффективную полноту катодной защиты по миллиамперметру в электрической цепи диод—миллиамперметр— 1И0Д. С этой целью наблюдают за показанием стрелки в процессе регулирования, [c.123]

    Измерение б производят при напряженности электрического поля ие менее 1 кв1мм при 20, 70 и 90 С на мосте переменного тока (Р-525) или любого другого прибора, обеспечивающего измерения tg б в соответствующих пределах при заданием напряжении и пригодного для работы с трехэлектродной схемой. Применяемые приборы должны иметь пределы измерения, перекрывающие значения измеряемой величины tg б примерно в 2 раза. [c.216]

    Хотя электропроводность растворов электролитов рассматривается только в гл. 16, ее предварительное обсуждение позволяет понять суть экспериментального метода определения данных, с помощью которых вычисляются значения констант и К . Чистая вода является плохим проводником электрического тока, но растворы Na l или какого-либо другого типично ионного вещества очень хорошо проводят ток. Растворы слабых электролитов занимают промежуточное положение между плохими и хорошими проводниками электрического тока, так как частичная ионизация этих веществ способна обеспечить лишь слабую или не слишком больщую электропроводность. Принцип действия приборов, предназначенных для измерения электропроводности, основан на том, что наличие электрического потенциала вызывает протекание тока, сила которого связана с потенциалом и сопротивлением R проводящей среды законом Ома Напряжение (вольты) = [c.266]

    Величину 2= РоС называют удельным акустическим (волновым) сопротивлением среды. Она имеет важнейшее значение для описания распространения, излучения и отражения упругих волн. Выражение (2.7) иногда называют акус -тическим законом Ома. В самом деле, если поставить в соответствие электрическому напряжению акустическое давление, электрическому току - колебательную скорость, электрическому сопротивлению - удельное акустическое сопротивление, то можно сопоставить электрический закон Ома и = Ш п акус-. тический закон Ома р = vZ. В соответствии с этой аналогией единица измерения 2 получила название акустического Ома (1 акОм = 1 кг/(м с)). [c.35]


Смотреть страницы где упоминается термин Напряжение электрического тока, измерение: [c.18]    [c.107]    [c.338]    [c.132]    [c.59]    [c.136]    [c.21]    [c.81]    [c.231]    [c.508]   
Оборудование химических лабораторий (1978) -- [ c.182 , c.185 , c.441 , c.442 ]




ПОИСК





Смотрите так же термины и статьи:

Измерение напряжения

Напряжение электрического тока

Электрические измерения



© 2025 chem21.info Реклама на сайте