Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы зона проводимости

    Так как свойства вещества — механические, электрические, оптические, химические — определяются энергетическим состоянием валентных электронов, то в первую очередь нас интересует соответствующий участок энергетического спектра. Параметры последнего — значения ширины валентной, запрещенной зон, зоны проводимости и положение различных локализованных уровней — могут быть определены путем изучения оптических спектров, электропроводности и других свойств твердого вещества (см. гл. IX). Зная эти параметры, можно решать обратную задачу определять по ним неизвестные нам свойства вещества. Не случайно общепринятое деление твердых веществ на изоляторы, проводники, полуметаллы и металлы основывается на значениях ширины запрещенной зоны. Возьмем, например, ряд простых веществ алмаз, кремний, германий, олово, свинец. Каждое из этих вещёств по-своему замечательно и каждое используется как незаменимый материал, но в совершенно различных областях техники, а кремний и германии находят применение в полупроводниковой технике. Природа данных веществ изменяется скачками, как атомные номера соответствующих элементов. Скачками изменяется и ширина запрещенной зоны при переходе от одного аналога к другому. Для алмаза эта величина составляет 5,6 эВ. Это — изолятор, самое твердое из веществ. Для кремния она равна 1,21 эВ. Такой энергетический барьер уже много доступнее для валентных элек- тронов отсюда полупроводниковые свойства данного вещества. Ширина запрещенной зоны германия 0,78 эВ — он полупроводник с высокой подвижностью носителей тока — электронов и дырок. Наконец, серое олово по ширине запрещенной зоны, равной всего 0,08 эВ, занимает последнее место в данном ряду и относится скорее к металлам, чем к полупроводникам, а белое олово — настоящий металл. Так с изменением ширины запрещенной зоны закономерно изменяется природа твердого вещества. [c.105]


    В зависимости от структуры атомов и симметрии кристаллической решетки валентная зона и зона проводимости могут перекрывать рис. 75, б) пли не перекрывать друг друга (рис. 75, а). В последнем лучае между зонами имеется энергетический разрыв, именуемый запрещенной зоной. В соответствии с характером расположения и заполнения зон вещества являются диэлектриками изоляторами), полупроводниками и проводниками (металлами). Ширина запрещенной зоны Af диэлектриков составляет более 3 эВ, полупроводников — от 0,1 до 3 эВ. В металлических кристаллах вследствие перекрывания зон запрещенная зона отсутствует. [c.116]

    ЧИСЛО возможных уровней в зоне ровно в два раза больше, чем число электронов, вследствие чего она является зоной проводимости. Этим объясняется также высокая электрическая проводимость этих металлов. Существует несколько основных типов взаимного расположения энергетических зон (рис. А.62), соответствующих изолятору, одновалентному металлу, двухвалентному металлу, полупроводнику с собственной проводимостью, примесному полупроводнику и-типа и примесному полупроводнику р-типа. Соотношение энергетических зон (рис. А.62) определяет также тип проводимости твердого тела. [c.142]

    Характерная для металлов способность хорошо проводить электрический ток путем перемещения электронов, наблюдаемая уже при обычных (не очень больших) разностях потенциалов, возможна только при условии,, что перемещение электронов не требует преодоления значительных энергетических барьеров. Это достигается лишь при перемещении электрона в пределах одной данной зоны. Такое перемещение возможно, когда в данной зоне имеются вакантные уровни, т. е. когда число электронов в ней меньше, чем допускаемое принципом Паули ( 9). Именно такие частично заполненные зоны являются в металлах зонами проводимости, а зоны, не содержащие вакантных уровней валентные зоны) не участвуют в этом процессе. (О возможном переходе электронов в выше расположенные пустые зоны см. при обсуждении свойств полупроводников, 55.) [c.137]

    Число электронов, переходящих в зону проводимости, а следовательно, и число дырок увеличивается с повышением температуры или освещенности. В этом существенное отличие полупроводников от металлов их электрическая проводимость существенно возрастает с повышением температуры, тогда как у металлов, наоборот, электрическая проводимость с повышением температуры падает. [c.118]


    Лекция 47. Энергетические зоны в кристаллах. Распределения электронов по зонам. Валентная зона и зона проводимости. Металлы, диэлектрики. Собственная и примесная проводимость полупровод-ников. [c.167]

    Вернемся к литию (см. выше). Каждый его атом представлен одним 25-уровнем в валентной зоне и одним — в зоне проводимости (см. рис. 28). Если кристалл состоит из N атомов лития, то в валентной зоне имеется N энергетических уровней, на каждом из которых могло бы находиться по два электрона. Но у лития имеется только один валентный электрон. Следовательно, половина уровней в этой зоне не заняты. Поэтому валентные электроны перемещаются от одного свободного уровня данной зоны к другому, двигаясь между атомными остовами — положительными ядрами атомов, отчасти заэкранированными электронными оболочками 15 литий электропроводен, это металл. Твердые вещества, такие как алмаз, имеют энергетический спектр с полностью занятыми уровнями валентной зоны, отделенной от зоны проводимости широкой запрещенной зоны. Это изоляторы. Но если ширина запре- [c.104]

    В отличие от металлов кристаллы простых веществ, образованных неметаллами, обычно не обладают заметной электронной проводимостью они представляют собой изоляторы (диэлектрики). Хотя в этом случае тоже возможно образование непрерывных энергетических зон, но здесь зона проводимости отделена от валентной зоны запрещенной зоной, т. е. значительным энергетическим промежутком АЕ > 2 эВ (рис. 33.1, изолятор). Энергия теплового движения или слабого электрического поля оказывается недостаточной для преодоления этого промежутка, и электроны не переходят из валентной зоны в зону проводимости. Таким образом, в изоляторах электроны не могут свободно перемещаться по кристаллу и служить переносчиками электрического тока. [c.634]

    Если принять для перехода ионов металла из точки Р (рис, 26) в междоузлия решетки окисла полупроводника п-типа, что W н — энергия, соответствующая этому переходу, Ф — энергия, необходимая для перехода электрона из металла в зону проводимости окисной пленки (рис. 27), а Е — энергия сиязи электрон—ион в междоузлии, то величина — Е будет энергией раство- [c.50]

    Непрозрачность и характерный металлический блеск металлов обусловлены структурой энергетических уровней металлов. Близость энергий большого количества занятых и свободных уровней приводит к тому, что любому кванту видимого света с энергией Е = Н и всегда имеется такая пара энергетических уровней, один из которых находится в валентной зоне, а другой — в зоне проводимости, что разность их энергий равна Е. В этом случае электрон из валентной зоны, поглощая квант света, переходит в зону проводи.мости. Свет не отражается, а поглощается. Поэтому металлы непрозрачны. В то же время металлам характерен блеск, который появляется в результате испускания света при возвращении возбужденных светом электронов на более низкие энергетические уровни. [c.151]

    Принцип метода модуляционной спектроскопии отражения основан на том, что отражение света от поверхности металла связано с состоянием его поверхностной электронной плазмы. Последнее в свою очередь зависит от плотности заряда электрода q и от донорно-акцепторного взаимодействия частиц адсорбата с металлом. Таким образом, величина ARIR позволяет характеризовать как наличие на поверхности электрода молекул органического вещества, адсорбция которых изменяет q, так и наличие или отсутствие специфического, донорно-акцепторного взаимодействия адсорбированных молекул с поверхностью металла. Так, например, методом модуляционной спектроскопии отражения можно зафиксировать характерное для адсорбции ароматических и гетероциклических соединений я-электронное взаимодействие их с положительно заряженной поверхностью электрода (частичный переход л-электронов органической молекулы на уровни зоны проводимости металла). [c.34]

    Полупроводники обладают свойством пропускать электрический ток при условии, что они получают извне сравнительно небольшую энергию, необходимую для возбуждения электронов из нижней заполненной валентной зоны в верхнюю пустую зону проводимости. Поскольку при повышении температуры число возбуждаемых электронов возрастает, проводимость полупроводника увеличивается с температурой. Это свойство полупроводников совершенно противоположно поведению металлов при повышении температуры. [c.631]

    Число электронов, переходящих в зону проводимости, а следовательно, и число дырок увеличивается с повышением температуры или освещенности. В этом существенное отличие полупроводников от металлов их электрическая проводимость существенно возрастает с повышением температуры, тогда как у металлов, наоборот, проводимость с повышением температуры падает. Чем больше ширина запрещенной зоны, тем выше должна быть температура, при которой возникает электронно-дырочная проводимость. [c.108]


    У кристаллов какого типа максимально расстояние между валентной зоной и зоной проводимости-у диэлектриков, металлов или полупроводников Какой из этих типов кристаллов обладает минимальным расстоянием между валентной зоной и зоной проводимости  [c.641]

    Большинство катализаторов гидрокрекинга—полупроводники. В отличие от металлов (проводники), для которых переход электронов из валентной зоны в зону проводимости осуществляется легко, без преодоления энергетического барьера, в полупроводниках этот переход требует преодоления энергетического барьера, так называемой энергии акт1шации электропроводности Это объясняется те.м, что в металле атомы — нейтральг ые частицы, и электроны обобществлены. В окислах или сульфидах находятся ионы металлов, и для отрыва электронов требуется затрата энергии. По-этo iy окислы металлов (кроме окислов-изоляторов) начинают проводить ток только после нагревания. В любом окисле или сульфиде всегда сл ществуют пpи [e и пли нарушение стехнометрического состава (избыток. металла или избыток металлоида). [c.145]

    Отношение свободного объема кристаллической решетки к объему атомов металла Параметр зоны проводимости. [c.167]

    Допуская в первом приближении, что атомы серы, принимающие в структуре сульфида электроны атомов металла, не изменяют своего энергетического состояния при замене некоторого количества атомов цинка на атомы меди, мы можем считать, что валентная зона кристаллофосфора совпадает с валентной зоной чистого сульфида цинка. Но, конечно, возбужденные состояния валентных электронов меди не могут совпадать с возбужденными состояниями валентных электронов цинка их уровни находятся ниже дна зоны проводимости, т. е. в запрещенной зоне чистого сульфида цинка (уровень 4, рис. 40). Так как концентрация меди [c.123]

    Природа связи. Предполагается, что донорные МСС состоят из отрицательно заряженных углеродных сеток и положительно заряженных ионов металлов. Такое распределение зарядов связано с передачей электрона от атома металла углеродной сетке. В результате возникает электростатическое взаимодействие положительно заряженных ионов металла со свободными электронами зоны проводимости углеродных слоев, соседних с ионами металлов и отдаленных от них на расстоянии нескольких слоев. [c.267]

    Металлы, диэлектрики и полупроводники различаются положением зон электронных энергетических уровней. У металлов валентная зона и зона проводимости перекрываются, поэтому не требуется [c.174]

    У алмаза электроны атомов углерода заполняют валентную зону. Перевод электронов в зону проводимости требует высоких энергий — ширина запрещенной зоны составляет А = 5,7 эВ, поэтому алмаз —диэлектрик (хотя по ряду других свойств его относят к полупроводникам). Кремний имеет структуру алмаза, и у него также заполнена валентная зона, но вследствие энергетической близости зоны проводимости и валентной зоны (Д =1,1 эВ) кремний проявляет свойства полупроводника. У графита валентная зона, содержащая 2р-негибридные электроны, и зона проводимости перекрываются, и эта модификация углерода, не являясь металлом, хорошо проводит электрический ток. [c.183]

    В полупроводниках число электронов, переходящих через запрещенную зону в зону проводимости, и число дырок, образующихся в валентной зоне, возрастает с повышением температуры электропроводность полупроводников с повышением температуры увеличивается (до определенного предела, пока полупроводник не начинает вести себя как металл). Таким об- [c.187]

    Оптические переходы между состояниями активатора и краями валентной зоны — и зоной проводимости — 2. по Громову, выражаются следующими уравнениями. При активации неорганических соединений металлами [c.126]

    Однако, если атомы водорода в молекулах этих соединений замещены атомами галоидов, то ситуация резко изменяется. Так, замена Н на F приводит к тому, что поверхностная активность органического вещества оказывается выше на границе раствор/ воздух, а замена Н на С1, Вг или I приводит, наоборот, к более высокой поверхностной активности на границе раствор/ртуть, причем эффект возрастает при переходе от хлора к брому и далее к йоду. Полученные результаты указывают на то, что специфическое взаимодействие с поверхностью ртути растет в ряду F< < H< i< Br< I. Причиной этого является усиление в том же ряду донорно-акцепторного взаимодействия между органической молекулой и поверхностью ртути, при котором электроны с атомов С1, Вг и I могут переходить на уровни зоны проводимости металла. Поэтому одновременно с увеличением поверхностной активности происходит соответствующее изменение сдвига потенциала нулевого заряда А д=о, вызванного адсорбцией органического вещества уменьшение положительного, а затем рост отрицательного значения Д д=о. [c.42]

    Расположение зон (ближе или дальше друг от друга) и их заполненность электронами обусловливают свойства кристалла как диэлектрика (изолятора), полупроводника и проводника. При условии перекрывания валентной зоны и зоны проводимости вещество ведет себя как проводник. Если зоны не перекрываются, достаточно далеко удалены друг от друга и валентная зона полностью заполнена электронами, вещество проявляет свойства диэлектрика. Энергетический разрыв между зоной проводимости и валентной зоной называется запрещенной зоной. Количественно способность веществ проводить электрический ток оценивается по ширине запрещенной зоны Е. У диэлектриков ширина запрещенной зоны выше 3 эВ, у полупроводников от 3 до 0,1 эВ и у проводников (металлов) запрещенная зона отсутствует, АЕ=0 (рис. 4.15). [c.182]

    В полупроводниках валентная зона и зона проводимости не перекрываются и между ними существует запрещенная зона шириной порядка 1 эВ. Кроме того, заряд полупроводниковой фазы сосредоточен не на поверхности, как у металлов, а распределен в некотором поверхностном слое. В результате этого в полупроводниковой фазе возникает скачок потенциала (< ) (см. рис. 79), приводящий к искривлению энергетических зон вблизи поверхности электрода. Таким образом, в отличие от модели металла-ящика (см. рис. 153) для полупроводникового электрода энергетические уровни можно представить схемой, приведенной на рис. 161. [c.292]

    При образовании, например, кристаллов щелочных металлов валентная зона атомов формируется из N внешних 5-электро-иов, которые занимают N12 энергетических уровня (по два электрона на уровне). В щелочных металлах валентная зона занимает половину имеющихся энергетических уровней (во внешнем -подуровне содержится один валентный электрон), остальные уровни не заполнены, они образуют зону проводимости. В непосредственной близости от валентной зоны находится зона проводимости. Это характерно для металлов. В эту зону могут легко переходить электроны под действием электрического поля и обеспечивать электрическую проводимость металла. [c.123]

    Если специфическая адсорбция ионов на поверхности электрода является обратимой, то форма спектров AR/Ro—X при этом обычно ие изменяете , а изменение кривых AR/Ro—Ео при = onst может быть связано с соответствующим изменением емкости. Поэтому сильное искажение спектров электроотражения может служить указанием на образование химических соединений. Такие данные были получены в водных растворах KI при больших анодных потенциалах серебряного и золотого электродов. При этом на кривых AR/Ro—I в области энергии квантов света h =h / k, соответствующей энергии диссоциации соединения Ме—1, наблюдался минимум. Аналогичные минимумы наблюдались в спектрах электроотражения р-полярпзованного света от поверхности свинцового и индиевого электродов при адсорбции на них молекул анилина. Они были связаны с частичным переходом л-электронов ароматического ядра в незаполненную зону проводимости металла при образовании адсорбционного комплекса с переносом заряда. [c.184]

    Удельное электрическое сопротивление проводников изменяется от 10" до 10 Ом-м. С повышением температуры оно увеличивается. Носителями заряда в них служат электроны. Валентная зона и зона проводимости электронной структуры метгиллов пересекаются (рис. 33.1, проводник). Это позволяет электронам из валентной зоны при небольшом возбуждении переходить на молекулярные орбитали зоны проводимости, а это значит, что электрон с другой вероятностью появляется в той или иной точке компактного металла. [c.637]

    В кристаллическом состоянии часть электронов из ё — оболочек переходит а зону проводимости и возникает возможность обмена электронами между (1— и внешней з —оболочкой. Энергетическая легкость подобного перехода (определяемая работой выхода электрона из металла) приводит к тому, что на внешней поверхности кристалла обрс1зуется определенное число свободных электронов. Их наличие [c.93]

    На рис. 4.44 и 4.45 изобраясена резкая граница межд> валентной зоной и зоной проводимости. В действительности эта граница размыта вследствие теплового движения электроны могут переходить с верхних уровней валентной зоны на нижние уровни зоны проводимости. Способность этих электронов свободно передвигаться по кристаллу и переносить энергию из одной его части (нагретой) в другую (холодную) служит причиной высокой теплопроводности металлов. Таким образом, и электрическая проводимость и теплопроводность металлов обусловлены возможностью свободного передвижения электронов зоны проводимости. Именно поэтому для большинства металлов наблюдается параллелизм между этими величинами. Например, лучшие проводники электричества — серебро и медь — обладают и наиболее высокой теплопроводностью. [c.150]

    Еще одним весьма важным отличием металлов от других кристаллов является расположение зоны проводимости, следующей за валентной зоной и более высокой, чем она, по энергии. Зона проводимости образуется из незанятых электронами энергетических подуровней атомов точно таким же образом, как валентная зона образуется из занятых валентных подуровней. В кристаллах металлов зона проводимости перекрывается с валентной зоной (рис. 22.4,а) другими словами, эти зоны создают непрерывный ряд тесно расположенных энергетических уровней. Термин зона проводимости означает, что электроны с соответствующими ей энергиями способны легко высвобождаться из-под влияния отдельных ядер и перемещаться по всему кристаллу. В твердых металлах при обычных температурах валентньш электроны распределяются не только по валентной зоне, но и по нижним уровням зоны проводимости. При наличии внешнего напряжения, приложенного к кристаллу металла, электроны [c.390]

    Чтобы под влиянием электрического поля возник электрический ток, электроны, увеличивая свою энергию, должны переходить на более высокие уровни. Этот переход возможен, если валентная зона заполнена только наполовину (как, например, у Ма), или если при равновесном расстоянии между центрами атомов в кристаллической решетке (/ о) происходит перекрывание валентной зоны и зоны проводимости (рис. 151). При выполнении одного из этих условий (или обоих) твердое тело должно быть металлом, а количество свободных носителей тока должно составлять приблизительно 10 частиц1см . [c.297]

    Соотношения (57.10) — (57,14), полученные феноменологическим путем, можно обосновать на основе теории реорганизации растворителя, Как вытекает из этой теории, вероятность квантовомеханического перехода электрона из полупроводника на реагирующую частицу в растворе пропорциональна произведению р(е)л(е)ехр[—ир,(е)/кТ, где р(е) — плотность электронных уровней (плотность состояний электрона). В металлах вблизи уровня Ферми p(e) si onst, а потому уровень е, обеспечивающий наиболее вероятный переход электрона, определяется максимумом произведения п(е) ехр 1— 7д(е)/АЯ (см, 56), Для полупроводниковых электродов в конкуренцию вступает третий фактор —р (е), который равен нулю в запрещенной зоне и резко возрастает при переходе в валентную зону или в зону проводимости. Так, например, в зоне проводимости [c.295]


Смотреть страницы где упоминается термин Металлы зона проводимости: [c.192]    [c.275]    [c.365]    [c.140]    [c.141]    [c.141]    [c.580]    [c.174]    [c.150]    [c.293]    [c.293]    [c.43]    [c.301]   
Кинетика и катализ (1963) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Зона металлов

Зона проводимости

Зонная зона проводимости

Проводимость



© 2025 chem21.info Реклама на сайте