Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коксование применение

    Авторы указывают, что исследуются также метод фильтрации через слой фильтрующего материала, непрерывное контактное коксование, применение центрифуг с фильтрами, экстрагирование при помощи растворителей, а также газификация тяжелого масла. [c.278]

    Первые печи с улавливанием потребляли для обогрева практически весь газ, получающийся при коксовании. Применение принципа регенерации тепла, предложенного Сименсом и внедренного в конструкциях коксовых печей Гофманом (1881 г.), значительно снизило расход [c.7]


    Самый старый метод промышленного производства ацетона заключался в сухой перегонке ацетата кальция, получающегося при нейтрализации известью древесного уксуса, который образуется при коксовании древесины [1]. Сейчас этот метод уже не находит применения, так как ацетон в этом случае содержит слишком много примесей, а исходный материал дефицитен. [c.140]

    В условиях данного эксперимента спирты отгонялись от непрореагировавших углеводородов в виде эфиров борной кислоты. Вполне возможно, что в промышленных условиях более целесообразным окажется применение иного способа отделения спиртов от углеводородов, например, экстракция селективными растворителями или адсорбция силикагелем. При изучении возможности использования спиртов оксосинтеза для производства натрийалкилсульфатов было установлено, что полученные спирты обеспечивают устойчивую глубину сульфирования в размере 90% и выше, а их сульфоэфиры характеризуются высокой моющей способностью. Низкая стоимость бензинов контактного коксования по сравнению с другими сырьевыми ресурсами обеспечивает весьма благоприятные технико-экономические показатели данного варианта производства высших жирных спиртов. Однако до сих пор ни советскими, ни зарубежными специалистами окончательно не выяснен вопрос о сравнительном качестве натрийалкилсульфатов, полученных на основе нормальных и изомерных спиртов. [c.194]

    Применение методов отбора и подготовки проб предусматривается в стандартах и технических условиях на нефтяные коксы замедленного коксования. [c.418]

    В литературе указывается на возможность и целесообразность применения в некоторых случаях специального узла подготовки сырья к коксованию (повышение коксуемости путем отгона легких фракций или окисления гудрона воздухом, гидро-обессеривание газойля [58]). Производительность установок замедленного коксования обычно составляет 0,3 и 0,6 млн. т в год, но может достигать 1,5 млн. т в год [50]. На установках [c.179]

    Для ироизводства нефтяного кокса используют остатки, имеющие плотность 990—1020 кг/м , коксуемость ио Конрадсону 4—10% (масс.) и содержащие 0,4—2,5% (масс.) серы. Чем выше коксуемость сырья, тем более высокими должны быть технико-экономические показатели процесса. Если кокс предназначается для изготовления графитированной продукции, в качестве сырья установок замедленного коксования применяют дистиллятные крекинг-остатки с низким содержанием серы и зольных элементов. Например, таким сырьем может быть крекинг-остаток из котур-тепинской нефти плотностью 1022 кг/м , коксуемостью 8,4% (масс.), с температурой начала кипения 360 С и содержанием серы не более 0,9% (масс.). При коксовании дистиллятного крекинг-остатка для получения высококачественного кокса рекомендуется вести процесс при повышенном давлении (0,05—0,08 МПа) и большом количестве рециркулируемого газойля без применения турбулизатора. [c.180]


    Диаметр цилиндрической части реакционной камеры 1 м, длина 2,8 м. Диаметр борова 0,6 м. Скорость движения саже-газовой сиеси в реакционной камере 7—9 м/с. Время пребывания в реакционной камере 0,3—0,4 с. Сажа получается марки ПМ-75. В борове скорость саже-газовой смеси возрастает до 30 м/с. Производительность печи по саже 140—220 кг/ч при расходе сырья 500—700 кг/ч высокотемпературного коксования каменных углей. Пековые дистилляты (продукты, получаемые при окислении каменноугольного пека и его коксования), применяемые в производстве сажи печи, можно разделить на следующие виды печи с использованием постороннего топлива и печи без применения постороннего топлива. [c.173]

    Проведен также детальный экономический анализ нескольких схем переработки мазута легкой аравийской нефти, основанных на сочетании различных деструктивных процессов фирмы ЮОП (табл, VI. 12). Анализ экономической эффективности комбинации процессов гидрообессеривания мазута и замедленного коксования обессеренного сырья (табл. VI.13) показывает, что сочетание процессов гидрообессеривания и коксования требует значительно больших эксплуатационных расходов и капиталовложений по сравнению с использованием только процесса коксования. При чистой разности валовой стоимости продукции в 13 млн. долл./год дополнительные капиталовложения могут окупиться за 7,2 года. Это довольно большой срок окупаемости, но поскольку предварительное гидрообессеривание значительно повышает гкб кость коксования, позволяя из высокосернистых нефтей получать электродный кокс и дистилляты хорошего качества, сочетание процессов гидрообессеривания и коксования может прн определенных условиях найти применение на отдельных НПЗ. [c.143]

    Для повышения выхода кокса из прямогонных остатков предпочтительно использовать гудрон, имеющий более высокую коксуемость. В отдельных случаях приходится отходить от этого общего правила. При выдаче рекомендаций для коксования прямогонных остатков эхабинских (сахалинских) нефтей нами был выбран мазут, а не гудрон, так как бензиновая фракция, полученная при коксовании гудрона (в полную противоположность мазуту), оказалась настолько нестабильной, что не поддавалась обычным методам очистки. Применение специальных методов очистки было мало эффективно. По-видимому, в вакуумном отгоне эхабинской нефти нафтенового основания находятся в повышенном количестве гомологи нафталина и другие полициклические ароматические углеводороды, которые, по данным Н. И. Черножукова и С. Э. Крейна [274], являются эффективными ингибиторами против окисления нафтеновых и парафиновых углеводородов молекулярным кислородом, а при отгоне вакуумного газойля из остатка эти естественные ингибиторы удалялись. [c.25]

    Сырьем для коксования могут служить также экстракты от селективной очистки масел и тяжелый газойль каталитического крекинга. При очистке смазочных масел фенолом, фурфуролом и другими селективными растворителями в экстракте концентрируются полициклические нафтеновые и ароматические углеводороды — нежелательная часть для товарных масел. Коксуемость этих экстрактов близка к коксуемости крекинг-остатков из дистиллятного сырья и мазутов малосмолистых нефтей. Применение такого сырья, богатого ароматическими конденсированными системами, позволяет получать нефтяной кокс с хорошими механическими свойствами и низким содержанием золы, так как это сырье дистиллятного происхождения. [c.35]

    Капиталовложения в пересчете на 1 т сырья наибольшие в процессе замедленного коксования. Для улучшения техникоэкономических показателей процесса обычно идут по линии увеличения производственной мощности установок, усовершенствования технической оснащенности их, расширения сферы применения всех получаемых продуктов в народном хозяй- [c.136]

    Коксование сырья с добавкой до 7% хлористого алюминия привело к уменьшению количества серы в коксе в 1,5—2 раза [133]. Обессеривающее действие хлористого алюминия при крекинге было известно ранее [70], но не нашло промышленного применения из-за коррозии аппаратуры, дороговизны и дефицитности самого реагента. В этих опытах также происходила сильная коррозия аппаратуры и возрастало содержание золы в коксе с 0,7—0,9 до 5—7,8%. Кокс при этом получался непрочный и легко истирался в порошок. Зола состояла в основном из окислов железа и алюминия. [c.160]

    Производство дизельных топлив можно значительно увеличить за счет использования в их составе вторичных газойлей (каталитического крекинга и коксования), хотя это и приводит к ухудшению химической стабильности топлив. Наибольшее применение за рубежом находит легкий газойль каталитического крекинга с псевдоожиженным слоем. В США, например, доля такого газойля в составе дизельного топлива весьма значительна. Поэтому в нем возросло содержание ароматических углеводородов, а цетановое число уменьшилось в среднем дизельном фонде до 40-42 против 45-50 в Западной Европе и СССР. [c.213]


    Когда при применении сильно действующего растворителя экстрагируют 10—20% органической части спекающегося угля, определяют, что нерастворимый остаток не превращается в пластическое состояние при коксовании, в то время как экстракт ведет себя как очень плавкий битум. Это долгое время заставляло предполагать существование в углях растворимого спекающего начала . Однако можно показать, что и нерастворимый остаток, хотя, очевидно, и лишенный свойства спекаться, все же не является вполне инертным материалом и играет значительную роль в протекающих явлениях образования пластической угольной массы, вспучивания и спекания углей. [c.23]

    В отличие от обычно/о процесса коксования, применение волновых воздействий позволило увеличить выход 1сруппокускового кокса и дистиллятных фракций, изменить свойства получае.мых коксов[33,34]. [c.13]

    Броновский (Национальное угольное управление, Сток Орчард) остановился на методике определения теплоты коксования, примененной им совместно с Оуэном. [c.111]

    Среди термических процессов наиболее широкое распрос — тран<зние в нашей стране и за рубежом получил процесс замедлен — ного коксования, который позволяет перерабатывать самые различные виды ТНО с выработкой продуктов, находящих достаточно квал11фицированное применение в различных отраслях народного хозяйства. Другие разновидности процессов коксования ТНО — периодическое коксование в кубах и коксование в псевдоожижен — ном (ууое порошкообразного кокса — нашли ограниченное применение. Здесь рассматриваются только установки замедленного кок — сова) [ИЯ (УЗК). [c.53]

    Технический углерод — сажа — является, в отличие от не фтяного кокса и пироутлерода, особой дисперсной формой углерода, получаемого при более высокотемпературном, по сравнению с коксованием и пиролизом, термолизе углеводородного сырья (1200 — 2000 °С). Основными наиболее крупнотоннажными потребителями сажи являются шинная и резине — техническая промыш — ленности (более 90 % от всего объема производства саж]. Сажа находит применение также в производствах пластмасс, в электро — технической, лакокрасочной, полиграфической и ряде других отраслей промышленности. [c.70]

    Производство дизельных топлив можно значительно увеличить за счет использования в их составе вторичных газойлей Iкаталитического крекинга и коксования), хотя это и приводит к ухудшению химической стабильности топлив. Наибольшее применение за рубежом находит легкий 1азойль каталитического крекинга с псевдоожиженным слоем. В США, например, доля такого газойля [c.280]

    Продолжительность межремонтных циклов установок атмосферно-вакуумной перегонки нефти, термического крекирования сырья, замедленного коксования находится в прямой зависимости от качества подготовки нефти. При высоком содержании остаточных хлористых солей в обессоленной нефти происходит интенсивно хлористоводородная коррозия аппаратуры и трубопроводов. Наибольшее разрушающее воздействие на оборудование оказывает хлористоводородная и сероводородная коррозия. Поэтому улучшению подготовки нефтей должно уделяться самое серьезное внимание. Для этого на установках электрообессоливания необходимо внедрять технические мероприятия, позволяющие несмотря на увеличение объема нефти значительно улучшать ее качество. К таким мероприятиям относятся использование эффективных неионогенных деэмульгаторов типа дисольван, прогалит, ОЖК и др. увеличение времени обработки с применением дополнительных горизонтальных электродегидраторов более совершенной конструкции меж- и внут-риступенчатая рециркуляция воды, что позволяет без повышения общего ее расхода увеличить соотношение вода — нефть и улучшить отмывку нефти от солей и механических примесей дооборудование установок АВТ и АТ собственными блоками подготовки нефти с монтажом современных высокоэффективных горизонтальных электродегидраторов повышение температуры подогрева нефти и др. [c.199]

    Успешный опыт применения различных систем каталишческого крекинга способствовал созданию других нефтезаводских процессов (непрерывное коксование остатков, каталитический риформинг и т. д.) с циркулирующими катализаторами, твердыми теплоносителями или адсорбентами. [c.14]

    В процессе отбензинивания они представляют все, что отгоняется после бензина и керосина (иногда после одного бензина). Этот термин также применим к частично крекированным дистиллятам, пол5гчаемым при ныне устаревшем процессе коксования в горизонтальных кубовых нефтеперегонных установках, для производства парафиновых дистиллятов и к летучим продуктам процессов непрерывного коксования и висбрекинга. Вследствие упомянутого выше применения дистиллятных пефтетоплив, даже высокомолекулярных, в качестве сырья для каталитического крекинга, этот термин в настоящее время расширен и относится ко всем фракциям до тяжелых смазочных масел включительно. [c.479]

    Некоторые другие объекты практического применения, указанные в табл. ХУ11-2, кроме того, успешно используют специфические гидродинамические особенности фонтанирующего слоя. Например, истирание, обусловленное взаимным соударением частиц в фонтане, играет важную роль в предотвращении агломерации во время коксования угля и при обновлении поверхности частиц в случае пиролиза горючих сланцев. [c.652]

    Замедленное коксование предназначено для получения нефтяного кокса, используемого для изготовления токопроводящих изделий (анодов, графитировапных электродов) и в качестве восстановителей [50] Если кокс не является целевым продуктом, возможно применение коксования в кипящем (псевдоожи-женном) слое с газификацией полученного кокса [43]. От правильного технологического расчета и выбора конструкции нагревательных печей и коксовых камер во многом зависит эффективность работы промышленной установки замедленного коксования. [c.178]

    В табл. 3.24 показано качество некоторых промышленных коксов, полученных на установках замедленного коксования. Действительная плотность пепрокаленного кокса равна 1390— 1410 кг/м , содержание водорода в сыром коксе составляет 5— 7% (масс.). При таком содержании водорода нефтяной кокс является диэлектриком. Чтобы придать коксу высокую электрическую проводимость и плотность, его необходимо подвергнуть прокаливанию путем нагрева до температуры 1200—1400 °С в течение 60—90 мин. Требования к качеству прокаленного нефтяного кокса представлены в табл. 3.25. Наиболее жесткие требования по содержанию серы и действительной плотности предъявляются к коксу, применяемому в производстве графити-рованных электродов. Достижение таких показателей возможно при применении малосернистого исходного сырья и при по- [c.190]

    Кроме того, этот процесс — самый надежный и дешевый, хотя и малоэффективный, — позволяет перерабатывать сырье с высоким содержанием минеральных компонентов или трудногидрируемых смолистых и высокомолекулярных веш еств. Именно поэтому он был применен для переработки высокосмолистых нефтей (гидрокрекинг но методу Варга и может рассматриваться как возможный метод утилизации различных смол, образующихся в качестве побочных продуктов при процессах газификации , коксования, пиролиза и т. д. [c.163]

    Помимо применения нефтяных остатков для снижения температуры застывания тяжелых вакуумных газойлей, используемых в качестве базовых компонентов судовых высоковязких топлив, а также с целью расширения их ресурсов, нами были выбраны средние дистилляты каталитического крекинга и замедленного коксования. Ке-росино-газойлевые фракции этих процессов с большим запасом качества удовлетворяют требованиям на судовое топливо для тихоходных дизелей. [c.72]

    Л — легкая аравийская нефть б — тяжелая аравийская нефть в — аляскинская нефть / — замедленное коксование (530, 570, 520) 2 — гидрообессеривание гудрона и коксование (580, 730, 570) 3 — гидрвобессеривание вакуумного газойля, гудрона и ККФ (560, 710, обО) 4 — деасфальтизация с применением растворителей. (Цифры в скобках — капиталовложения в новое строительство с учетом объектов общезаводского хозяйства в млн. долл. для а. 6. в соответственно.) [c.142]

    Компенсация выработки дизельного топлива может быть достигнута как в сфере производства топлив, так и в сфере их применения. В нефтеперерабатывающей промышленности обеспечение потребности в топливе намечается за счет увеличения отбора светлых продуктов от потенциала при прямой перегонке нефти до 95-98%, что потребует реконструкции действующих установок атм осферно-вакуумной перегонки. Увеличение выработки ДТ может быть достигнуто при углублении переработки нефти за счет ввода мощностей по гидрокрекингу вакуумного газойля (при = 5-15 МПа), за счет увеличения мощностей каталитического крекинга, замедленного коксования, термического и термоконтактного крекинга [3, 5]. Однако продукты, получаемые в этих процессах (за исключением дистиллятов гидрокрекинга), содержат значительное количество непредельных углеводородов, склонных [c.8]

    Для удовлетворения возрастающей потребности в ДТ все большее внимание уделяется использованию дистиллятных фракций вторичных процессов в составе дизельных топлив. Только процесс гидрокрекинга вакуумного дистиллята позволяет получать продукты, стабильные при хранении и в условиях применения. Это связано с отсутствием в них ненасыщенных углеводородов, а также заметного количества гете-роатомных соединений. Дистилляты остальных процессов, прежде всего термических и особенно замедленного коксования, обогащены ненасыщенными углеводородами, включая диолефины и дициклоолефины, а также содержат значительное количество сернистых, азотистых и кислородсодержащих соединений (табл. 1.7). [c.24]

    Было лредложено несколько методов газификации тяжелых нефтепродуктов без применения кислорода, среди которых наиболее перспективным является так называемая система универсального коксования — Флексикокинг , разработанная компанией Экксон Рисерч [5]. Принципиальная технологическая схема этого процесса показана на рис. 16, из которого нетрудно понять, что подобная система позволяет достаточно полно, почти на 100% по энтальпии, конвертировать сырую нефть в газообразный продукт. [c.145]


Смотреть страницы где упоминается термин Коксование применение: [c.88]    [c.52]    [c.255]    [c.120]    [c.161]    [c.260]    [c.278]    [c.73]    [c.180]    [c.380]    [c.142]    [c.226]    [c.23]    [c.68]    [c.68]    [c.69]    [c.13]   
Общая химическая технология (1977) -- [ c.295 ]




ПОИСК





Смотрите так же термины и статьи:

Коксование



© 2025 chem21.info Реклама на сайте