Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий полярографическое

    В качестве растворителя этилендиамин особенно интересен для катодного восстановления неорганических соединений. Важно то, что этилендиамин весьма схож с аммиаком. Так, например, в нем могут образовываться растворы электронов, а ртуть может служить электронным электродом. По сравнению с аммиаком этилендиамин находится в жидком состоянии в более удобной для работы области температур (11-117°С) и имеет относительно низкое давление паров при комнатной температуре (-10 мм). Несмотря на низкую диэлектрическую постоянную (12), этилендиамин растворяет с одинаковым успехом как органические, так и многие неорганические соединения, особенно перхлораты и нитраты. Подобно аммиаку, этилендиамин не совсем подходит для проведения реакции электролитического окисления, однако для восстановительных процессов он вполне пригоден. Так, в этой среде можно исследовать полярографическое восстановление ионов щелочных металлов от лития до цезия и аммония [c.24]


    Ионы рубидия и цезия восстанавливаются на ртутном капельном электроде в водных растворах при очень низких потенциалах. Полярографическое определение рубидия и цезия в водных растворах оказывается невозможным. [c.45]

    В среде 80%-ного изопропанола на фоне 0,1 М раствора гидроокиси лития потенциал полуволны для ионов цезия находится при —2,03 в, а для ионов рубидия при —1,97 в (20— 30 °С) относительно насыщенного каломельного электрода и полярографическое определение рубидия или цезия возможно. [c.45]

    Гутманн и Шёбер [4] для отделения неводного растворителя от электрода сравнения, содержащего воду, рекомендуют специальную мембрану (стеклянная пористая перегородка, наполненная жидким стеклом), которая имеет незначительное омическое сопротивление и по крайней мере в течение 24 час препятствует заметному смешению водной и неводной фаз. Плесков [5] предложил метод нахождения значений нормальных потенциалов, не содержащих ошибки, обусловленной появлением диффузионного потенциала. Он исходил из предположения, что ионы НЬ и Сз" " практически не сольватируются и значения их нормальных потенциалов в большинстве растворителей равны между собой. Влчек [6] распространил эти представления на область полярографических исследований. Однако так как во многих средах очень трудно определить значения гютенциалов полуволн ионов рубидия и цезия, то в качестве потенциала сравнения он [б] предлагает использовать величину потенциала полуволны восстановления ионов калия, для которого, как предполагали, также характерна незначительная степень сольватации. [c.437]

    Следует, однако, отметить, что спад на поверхностных волнах не всегда углубляется при увеличении ионной силы раствора. Так, например, в сильно щелочной среде, где единственным донором протонов является вода и pH пе влияет на 1/2 волн, изменение ионной силы раствора сказывается главным образом на эффективном скачке потенциала и адсорбции деполяризатора поэтому с увеличением ионной силы может наблюдаться даже исчезновение спада. Подобное явление наблюдается, например,в случае первой волны восстановления 5-бром-2-ацетилтиофена в щелочной среде (электрохимический разрыв С — Вг-связи у протонированной по СО-груп-пе молекулы). На рис. 39 приведены [671] полярограммы бромацетилтиофена при различной ионной силе раствора как видно из рисунка, высота поверхностной кинетической волны с увеличением ионной силы повышается, глубина спада на ней делается меньше. То же наблюдается и при добавлении в раствор солей цезия. Это напоминает полярографическое поведение анионов, и можно было бы предположить, что в щелочных растворах бромацетилтиофена образуются невосстанавливающиеся анионы (например, в результате отщепления иона водорода от его еноль-ной формы), которые перед восстановлением протонируются в адсорбированном состоянии. На рис. 40 показана зависимость [c.176]


    Влияние структуры двойного слоя на полярографическое восстановление хромат-иона в щелочной среде весьма велико, так как заряд этого аниона равен —2. Первое сообщение было опубликовано Гирстом [9], а далее подобные исследования провели Тондер, Домбрэ и Гирст [16]. При изменении концентрации индифферентного электролита (NaOH) от 0,003 до 1 М потенциал полуволны смещается приблизительно на 0,8 в (рис. 97). Так как замедленная стадия процесса не зависит от pH, этот сдвиг связан с изменением фг-потенциала. Поправка Фрумкина очень хорошо описывает смещение в этом широком диапазоне потенциалов. Скорость восстановления в щелочной среде значительно возрастает при переходе от лития к цезию (рис. 111). [c.241]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Рубидиевая шкала оказалась полезной для приведения потенциалов электродов в различных растворителях к общей основе. Ион цезия больше рубидиевого и, по-видимому, несколько хуже сольватирован, чем рубидиевый поэтому Плесков мог бы выбрать в качестве стандарта цезиевый электрод, если бы располагал более надежными сведениями о его потенциалах в различных растворителях. Однако, как указал Штрелов [15], различия между стандартными потенциалами КЬ+ и Сз+ почти не зависят от растворителя, и рубидиевая шкала дает результаты, качественно согласующиеся с ожидаемыми для свободных энергий переноса других ионов. Преимущества этой шкалы выявились в работе Коци и сотр. [35], которые измерили полярографические потенциалы полуволн ряда катионов, присутствующих в виде перхлоратов в се.ми растворителях. В этих опытах использовался один и тот же фоновый электролит (0,05 или 0,1 М раствор перхлората тетраэтиламмония) разности потенциалов полуволн для данной пары металл — ион металла в различных растворителях позволяют грубо оценить свободные энергии переноса этих катионов или различия в их энергиях сольватации. [c.329]

    Количественное определение суммарного содержания рубидия и цезия проводится другими методами полярографическим, потенциомзтрическим и хроматографическим метод хроматографии на бумаге использовался при анализе продуктов деления [99]. [c.44]

    М уксусной кислоты, содержащим 0,005 М бериллия, и определяли спектрофотометрически [181]. Около 10" % кремния сорбировалось на анионите в С1 -форме в виде SiF " из раствора, содержащего фтористоводородную кислоту, с последующим вымыванием раствором борной кислоты для спектрофотометрического определения [5]. Нитрат-ион при содержании порядка 10 % сорбировался на слабоосновном анионите в С1"-форме затем его вымывали 1 %-ным раствором Na l и определяли спектрофотометрически [182]. Анионный обмен использовали также для предварительного концентрирования и и Th при полярографическом и спектрофотометрическом определениях [183]. Цезий при содержании 1 10" % сорбировался на фосфоро-молибдате аммония в статических условиях. После растворения ионообменника в растворе щелочи цезий экстрагировали раствором тетрафенилбор-натрия в смеси гексана и циклогексана и определяли фотометрически [184]. [c.113]

    Методы нахождения значений стандартных электродных потенциалов, не содержащих ошибок за счет появления диффузионного потенциала, описаны в гл. XII. Влчек [А, V1 с е к, 1951] распространил представления о практическом совпадении нормальных потенциалов ионов рубидия и цезия во всех неводных растворителях на область полярографических исследований. Однако, поскольку во многих средах очень трудно определить значение потенциалов полуволн ионов рубидия и цезия (вследствие электрохимической неустойчивости растворителей), то в качестве потенциала сравнения Влчек предложил использовать величину потенциала полуволны восстановления иона калия, число сольватации которого в большинстве растворителей мало. [c.303]


    В неорганическом анализе широко применяют концентрирование в статических условиях. Сорбцию микроколичеств сурьмы (V) из разбавленных растворов азотной кислоты оксидом алюминия ускоряют облучением растворов ультразвуком [647]. Гидратированный оксид железа (III) используют для концентрирования до 10 г/г хрома и ванадия при анализе алюминия высокой чистоты методом кулонометрического титрования [648]. Микроколичества фосфат- и арсенат-ионов количественно сорбируют на порошке оксида цинка. Затем сорбент растворяют в 6 М хлороводородной кислоте [649]. Метод использован при спектрофотометрическом определении фосфора в воде, а также фосфора и мышьяка в свинце высокой чистоты. При анализе меди 10 г/г висмута селективно выделяют на гидратированном оксиде свинца, который затем растворяют в растворе оксалата натрия и определяют висмут полярографически [650]. Микроколичества мышьяка и фосфора из водных растворов концентрируют на прокаленном сульфате бария или стронция [651, 652]. При спектрофотометрическом определении п -10 г/г Se в меди селен сорбируют на сульфате свинца, который затем растворяют в растворе тартрата аммония и анализируют [397]. При определении до 0,01 мкг/л цезия в воде его сорбируют на фосформолибдате аммония. Затем сорбент растворяют в растворе гидроксида натрия и экстрагируют тетрафенилборатом натрия в смеси метилизобутилкетона и циклогексана. Цезий определяют методом фотометрии пламени [653]. [c.101]


Смотреть страницы где упоминается термин Цезий полярографическое: [c.368]    [c.80]    [c.210]   
Практическое руководство по аналитической химии редких элементов (1966) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте