Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация металла

    Один из наиболее распространенных методов защиты от коррозии состоит в катодной поляризации металла. Из рис. 92 видно, что при отклонении потенциала металла в отрицательную сторону от скорость анодного растворения металла уменьшается, а скорость выделения водорода увеличивается, т. е. катодная поляризация уменьшает скорость коррозии. Катодную поляризацию можно создать от внешнего источника тока. Этот метод называют методом катодной защиты. Можно также соединить основной металл с другим металлом (протектором), который в ряду напряжений расположен левее. Часто для протекторной защиты используют магний или алюминий, при помощи которых защищают рельсы, мачты и другие конструкции. Протектор постепенно растворяется и его надо периодически заменять. Примером протекторной защиты служит также цинкование железных изделий. Железо является катодом локального элемента, а цинк—анодом. Следовательно, локальные токи вызывают коррозию покрытия, тогда как железо оказывается защищенным от коррозии. [c.214]


    Кинетику электродных процессов, в том числе и электродных процессов электрохимической коррозии металлов, принято изображать в виде поляризационных кривых, представляющих собой графическое изображение измеренной с помощью описанной в ч. III методики зависимости потенциалов электродов V от плотности тока i = I/S, т. е. V = f (i). На рис. 136 приведены кривые анодной и катодной поляризации металла, характеризующие его поведение в качестве анода и катода коррозионного элемента. Степень наклона кривых характеризует большую (крутой ход) или малую (пологий ход) затруд- [c.194]

    В условиях возможного наступления пассивности (в присутствии окислителя и при отсутствии депассиваторов) анодная поляризация металла от внешнего источника постоянного электрического тока (см. с. 321) может вызвать наступление пассивного состояния при достижении определенного значения эффективного потенциала металла и тем самым значительно снизить коррозию металла. Этот эффект также находит практическое использование в виде так называемой анодной электрохимической защиты. [c.365]

Рис. 136. Кривые анодной и катодной поляризации металла Рис. 136. <a href="/info/402614">Кривые анодной</a> и <a href="/info/15283">катодной поляризации</a> металла
    Очень большая замедленность анодной реакции ионизации металла имеет место при возникновении анодной пассивности (см. с. 305). Анодная поляризация металлов в определенных условиях может облегчать переход металлов в пассивное состояние (образование на металле первичных фазовых или адсорбционных защитных пленок), что сопровождается резким торможением анодного процесса с соответствующим самопроизвольным падением плотности тока и значительным смещением потенциала электрода в положительную сторону (участок ВЕ на рис. 137) до значений, достаточных для протекания нового анодного процесса, обычно выделения кислорода [участок EF кривой (Ко обр E>EF на рис. 137]. Значение этого вида анодной поляризации рассчитать нельзя и его берут обычно из опытных данных. [c.197]

    Для катодной поляризации металла, т. е. при сдвиге потенциала металла в отрицательную сторону, когда У е < Уме)обр и АК [c.200]


    Для защитного эффекта так же, как и для разностного, безразлично происхождение внешнего катодного тока, т. е. он наблюдается и при катодной поляризации металла от внешнего источника постоянного тока. [c.293]

    Деформация молекул в результате адсорбции признана и лежит в основе всех современных теорий катализа. С. 3. Рогинский даже ввел термин деформационный катализ, считая, что причины деформаций могут быть различны. Особая роль отводится влиянию электростатических сил поверхности (поляризации), металлам с незаконченными электронными оболочкам , миграции электронов и т. д. Вероятно, к пониманию причин и сути катализа близко подходит излагаемая ниже мультиплетная теория Баландина с ее модельными представлениями.  [c.126]

    Разностный и защитный эффекты наблюдаются при соответствующей поляризации металла или сплава независимо от способа ее осуществления (контакта с другим металлом или поляризации от внешнего источника постоянного тока). [c.295]

    Наблюдается при нормальном ходе поляризационных кривых при анодной поляризации металла внешним током [c.296]

    Теория пассивационного барьера (А. И. Красильщиков) исходит из того, что анодная поляризация металла в зависимости от места локализации скачка потенциала металл—раствор может приводить как к увеличению, так и к торможению скорости процесса его растворения. [c.310]

    Катодная поляризация металла с положительно заряженной поверхностью (т. е. с ср > 0) сдвигает его потенциал к нулевой точке, что способствует адсорбции молекулярных ингибиторных добавок и повышает эффективность их действия. [c.366]

    Рис 14. Кривая анодной поляризации металла [c.35]

    Электрохимическая защита, осуществляемая с помощью катодной поляризации (металл становится катодом по отношение к другому электроду), осуществляется двумя способами. [c.60]

    При потенциале ниже критического ионы С1 не могут заместить адсорбированный кислород до тех пор, пока пассивная пленка остается неповрежденной, поэтому питтинг не развивается. Если бы пассивность была нарушена другим путем, например снижением концентрации кислорода или деполяризатора в щелях (щелевая коррозия) или локальной катодной поляризацией,- пит-тинг мог бы тогда возникнуть независимо от того, выше или ниже критического значения находится потенциал основной поверхности. Но в условиях однородной пассивности на всей поверхности металла, чтобы организовать катодную защиту для предотвращения питтингообразования, требуется лишь сдвинуть потенциал металла ниже критического значения. Это противоречит обычному правилу применения катодной защиты, согласно которому необходима более глубокая поляризация металла — до значения анодного потенциала при разомкнутой цепи. [c.88]

    Агрессивность грунта определяется 1) его пористостью (аэрацией), 2) электропроводимостью или сопротивлением, 3) наличием растворенных солей, включая деполяризаторы или ингибиторы, 4) влажностью, 5) кислотностью или щелочностью. Каждый из этих параметров может влиять на характеристики анодной и катодной поляризации металла в грунте [6]. [c.182]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых окисных пленок или солевых пленок, возникающих при растворении металлов. Образование окисных пленок — причина устойчивости многих металлов, например алюминия. Из рис. 96 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют [c.215]

    На рис. УП1-5, б приведены анодная (/ — 1 ) и катодная (1 — /") поляризационные кривые основного, более положительного металла, а также анодная (3 — 3 ) и катодная (3 — 3") поляризационные кривые более отрицательного металла (примеси). Точки пересечения катодных и анодных кривых характеризуют равновесные потенциалы е и при которых скорости катодного и анодного процессов равны и определяют равновесные токи обмена и. Если поляризовать электрод катодно до потенциала к, более отрицательного, чем равновесный потенциал (при этом сила тока /к), то поляризация металла М1 равна а [c.248]

    При поляризации металла величина oi.a меняется по закону, отображаемому электрокапиллярной кривой, т. е. о, 2 уменьшается по мере удаления потенциала катода от потенциала нулевого заряда поверхности. Поверхностное натяжение раствор — газ (02,з) не зависит от поляризации (но может зависеть от pH раствора и от содержания в растворе поверхностно активных веществ). Величина 0],з принципиально не должна зависеть от потенциала катода. Однако под пузырьком металл может быть покрыт тонкой пленкой раствора. В этом случае величина 01,3 будет меняться с изменением потенциала. Этим изменением [c.346]


    Заметное влияние на структуру оказывает природа аниона простой соли вследствие того, что поляризация металла различна в растворах разных солей. Примером могут служить катодные осадки свинца, получающиеся в виде дендритов или губки из нитратных и ацетатных растворов и довольно гладкими и плотными— в кремне- и борфтористоводородных растворах. [c.132]

    С, наблюдается при контакте с водным раствором Oj и СО при комнатной температуре и 0,7 МПа [11]. Катодная поляризация металла предотвращает разрушение в этом растворе. Были отмечены взрывы, вызванные растрескиванием стальных емкостей для хранения светильного газа под давлением. Растрескивание при напряжениях ниже предела упругости имело транскристал-литный характер и вызвано было присутствием в газе небольших количеств H N [12]. Аварии такого рода прекратились после удаления из газа следов H N и влаги. Могут ли СО и СОг быть одной из причин растрескивания — не установлено. [c.134]

    Анодная поляризация металла, т. е. сдвиг потенциала металла в положительную сторону, когда > (Ул1е)обр и А1/ > О, повышает энергетический уровень катионов на поверхности металла и понижает его у катионов, находящихся в растворе на расстоянии бо от поверхности металла, как это представлено кривой 3 на рис. 138. Устанавливающийся при этом скачок потенциала, поляризуемого внешним током металла относительно растЕюра Уа, дает в плотной части двойного слоя скачок г]) 4= обр- совершаемая работа А при переходе 1 г-иона катионов металла в раствор будет равна [c.199]

    Реальные экспериментальные) поляризационные кривые, по-лучаемые при анодной поляризации анодной фазы Уа = / (ив ешп и катодной поляризации катодной фазы У, = / (Опнгши. заметно отличаются от идеальных кривых анодной и катодной поляризации, представленных на рис. 137 и 159, а получаемые при анодной и катодной поляризации металла, состоящего из анодной и катодной фазы, совсем не совпадают с идеальными поляризационными кривыми в большом интервале плотностей тока. Это различие обусловлено наличием эффекта саморастворения (корро- [c.282]

    Эффект растет с ростом и уменьшением Рк металла Поллое подавление работы микропар достигается при V = (Ук)обр. что возможно только при анодной поляризации металла от внешнего источника постоянного тока, при этом обычно (/а)внешн>/о [c.296]

    Эффект растет с ростом Як и уменьшается с ростом Рц металла Полное подавление работы микро-нар достигается при V = (Ул1е)обр. что возможно при катодной поляризации металла как от внешнего источника постоянного тока, так и при помощи анодного протектора, при этом обычно (/к)онешн>/о Эффект имеет большое практическое значение и используется для уменьшения или полного прекра-ш,ения электрохимической коррозии защищаемой конструкции с переносом растворения на менее ценную конструкцию (протектор или дополнительный анод) [c.296]

    По данным И. Л. Розенфельда и Л. И. Антропова, катодная поляризация металла от внешнего источника тока может существенно изменить скорость его коррозии в результате десорбции анионов или адсорбции катионов, которые повышают поляризацию катодного процесса, особенно резко при переходе потенциала нулевого заряда данного металла. Таким образом, катодная поляризация повышает эффективность катионных ингибиторных добавок, а эти добавки могут повысить эффективность катодной электрохимической защиты металлов, снижая значение необходимого защитного тока. Так, защитный ток для железа в 1-н. Н2804 в присутствии 0,1 г/л трибензиламина (СдНбСН2)зК уменьшается в 14 раз. При катодной поляризации замедляющее действие могут оказывать такие катионные добавки, которые обычно не являются ингибиторами коррозии. [c.366]

    Внешняя поляризация металла изменяет pH раствора в при-электродной области. Анодная поляризация сопровождается под-кислвнием раствора, а катодная его подщелачиванием. Эти вто- [c.366]

    Возникновение пассивного состояния металла определяется не только окислительной способностью агрессивной среды. Из-нестны случаи пассивации металлов и в нсокпслительиой среде, например молибдена в соляной кислоте, магния в плавиковой кислоте и др. Пассивное состояние наступает также, как было указано в гл. 1П, вследствие аиодной поляризации металла, [роцессу пассивации способствует увеличение анодной нлотно-сти тока. Во многих случаях ири достижении некоторой плотности тока происходит внезапный переход электрода в пассивное состояние (например, железа в концентрированном растворе NaOH при повышенной температуре). [c.60]

    Электрохимическая защита, осуществляемая с помощью анодной поляризации (металл становится анодом по отношению к другому электроду), наяываетоя анодной защитой. [c.61]

    Если поляризация металла несколько выше потенциала. анода а> скорость коррозии остается равной нулю. Суммарный ток на анодных участках течет из электролита в металл, вследствие чего ионы металла не могут перейти в раствор. Приложе- [c.69]

    При 368-суточных испытаниях различных промышленных сплавов алюминия в морской воде возле Ки-Уэст во Флориде их коррозионное поведение (наличие или отсутствие питтинга) зависело от присущего им коррозионного потенциала [7]. На сплавах с потенциалами от —0,4 до —0,6 В (большинство из них содержало легирующую добавку меди) образовались питтинги со средней глубиной 0,15—0,99 мм. На сплавах с более отрицательными значениями потенциала (от —0,7 до —1,0 В) питтинг практически не образовывался. Причина такого поведения сплавов становится понятной, если сопоставить указанные области коррозионных потенциалов со значением критического потенциала питтингообразования в 3 % растворе Na l, которое составляет —0,45 В (см. разд. 5.5.2). Контакт образцов сплавов, склонных к питтингу, с пластинами активного алюминиевого сплава (см. разд. 12.1.2), который обеспечивал поляризацию металлов примерно до —0,85 В в основном успешно предотвращал образование питтинга в течение всего периода испытаний. Результаты этих испытаний в реальных условиях подтверждают предположение, что в отсутствие щелей алюминий и его сплавы при потенциалах ниже критического значения не подвергаются питтинговой коррозии. [c.343]

    При адсорбции иона на поверхности металла происходит поляризация металла под влиянием электрического заряда иона. Эту поляризацию можно представить таким образом, как если бы в металле на таком же расстоянии от его поверхности, на которое удален индуцирующий заряд, создава гся равный ему электрический заряд противоположного знака (электрическое изображение). Следовательно, то притяжение, которое должен при этом испытывать адсорбированный ион, может быть представлено как притяжение между ионом и его изображением, удаленным от иона на расстояние 2г, если в качестве г принять расстояние между ионом и поверхностью. Здесь мы встречаемся с трудностью, связанной с отсутствием ясного представления о том, где расположена поверхность металла или, вернее, граница той области, в пределах которой пребывают электроны проводимости. Сила изображения равна [c.33]

    Один из наиболее распространенных методов защиты от коррозии состоит в катодной поляризации металла. Из рис. IX. 3 видно, что при отклонении потенциала металла в отрицательную сторону от Ес скорость анодного растворения металла уменьша- [c.256]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых оксидных или солевых пленок, возникающих при растворении металлов. Образование оксидных пленок — причина устойчивости многих металлов, например алюминия. Из рис. IX. 6 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют также, напыляя более благородный металл на защищаемый, используя благородные металлы в качестве легирующих добавок или протекторов. В результате основной металл поляризуется анодно и переходит в пассивное состояние. Переход в пассивное состояние может вызвать присутствие в растворе окислителей, например кислорода и др. (рис. IX. 6). Так, пассивацию железа вызывают концентрированные HNOa и H2SO4, что позволяет использовать железную тару для перевозки серной и азотной кислот. Образование оксидных слоев сильно влияет не только на анодное растворение металлов, но приводит к ингибрированию и многих других электродных процессов. Поэтому изучение механизма пассивации, процессов образования, роста и свойств оксидных слоев на металлических электродах — важная задача современной электрохимии. [c.258]

    На металлах, у которых критическому потенциалу пассивации соответствует очень высокая скорость растворения, анодная пассивация реально наступает только при достижении более высоких потенциалов. Г. М. Флорианович показала, что железный анод в тщательно обескислороженном растворе кислоты удается запасси-вировать только при потенциалах выделения кислорода. Наоборот, пассивация заметно облегчается при введении в раствор перекиси водорода даже в очень малых концентрациях. Добавка 1—2 г пергидроля на литр кислоты дает больший эффект, чем повышение тока на несколько а1см . Таким образом, роль окислителя в процессе пассивации металла не всегда сводится к анодной поляризации металла. Иногда вещество, содержащее окислитель, может быть и непосредственным эффективным донором пассивирующего кислорода. [c.441]

    На рис. 4.6 приведены анодная 1—1 ) и катодная 1—1") поляризационные кривые основного металла с более положительным потендиалом, а также анодн ая (5—3 ) и катодная (3—3") поляризационные кривые металла (примеси) с более отрицательным потенциалом. Точки пересечения катодных и анодных кривых характеризуют равновесные потенциалы и Ер , при которых скорости катодного и анодного процессов равны и определяют токи обмена и Если поляризовать электрод катодно до потенциала Ец, более отрицательного, чем равновесный потенциал Ер а (при этом сила тока к), то поляризация металла М] равна AJ-м,, а поляризация металла-примеси— ЛЕмц. Е> случае, изображенном на рис. 4,6, [c.367]


Смотреть страницы где упоминается термин Поляризация металла: [c.635]    [c.161]    [c.363]    [c.367]    [c.183]    [c.247]    [c.248]    [c.362]    [c.362]    [c.149]    [c.362]   
Лакокрасочные покрытия (1968) -- [ c.467 , c.472 ]




ПОИСК







© 2024 chem21.info Реклама на сайте