Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размеры ионов—. Притяжение между ионами

    Роль водородных связей в образовании ионных пар. Отклонения электролитической проводимости больших ионов от предельного закона Дебая — Хюккеля — Онзагера, зависимость коэффициента активности и осмотического коэффициента от концентрации и некоторые другие явления указывают на то, что большие ионы не имеют первичной гидратной оболочки и влияние их вторичной гидратации проявляется главным образом в воздействии на структуру прилегающих к ионам слоев воды, вызывающем повышение упорядоченности. Эти ионы, так сказать, гидрофобны, и их структурообразующее влияние на воду тем больше, чем больше их размеры. Как отмечает Даймонд [48а], в растворах больших ионов, не имеющих первичной гидратной оболочки, образование ионных пар облегчается тем, что в добавление к электростатическому притяжению между их зарядами вода вблизи этих ионов проявляет эффект, способствующий усилению взаимной связи гидрофобных ионов благодаря структурированию. Это добавочное действие обусловлено тем, что водородные связи между молекулами воды стремятся усилить взаимодействие между молекулами и снизить искажения структуры воды. Влияние структуры жидкости, облегчающее ионную ассоциацию, отличается от образования ионных пар по Бьерруму, обусловленному одним лишь действием электростатических сил. Это влияние возникает только в жидкостях, для которых характерно об- [c.508]


    Напомним, что, согласно изложенному в разд. 7.3, ч. 1, анионы, как правило, имеют большие радиусы, чем катионы. Поэтому можно представить себе кристаллическую решетку ионного вещества в виде плотноупакованной анионной структуры, в которой тот или иной тип дырок занят катионами. Относительные размеры катионов и анионов определяют тип дырок, занимаемых катионами. Наиболее устойчивая структура достигается при максимальном числе контактов между катионами и анионами, что соответствует наибольшей суммарной величине сил электростатического притяжения между противоположно заряженными ионами в кристаллической решетке ионного вешества. Однако устойчивая структура не может существовать при наличии прямых контактов между анионами, которые привели бы к появлению слишком больших электростатических сил отталкивания. Рассмотрим подробнее различные возможности на примере ситуации, когда небольшие катионы в точности заполняют тетраэдрические дырки, образованные плотноупакованным расположением анионов. Как было указано, такая ситуация возникает при условии, что отношение радиусов катиона и аниона rJr равно 0,225. При таком условии катион касается четырех окружающих его анионов. Теперь посмотрим, что произойдет, если размер катиона начнет увеличиваться, так что станет выполняться условие rJr > 0,225. В таком случае анионы раздвигаются, что уменьшает дестабилизующие контакты между ними, тогда как стабилизующие структуру катионно-анионные контакты сохраняются. Однако, когда отношение радиусов достигает значения 0,414, положение катиона в тетраэдрической дырке перестает быть устойчивым. Более устойчивым положением для катиона становится октаэдрическая дырка, находясь в которой он обеспечивает большее число [c.352]

    Сила электростатического притяжения между ионами обратно пропорциональна диэлектрической постоянной среды. Поэтому в жидком аммиаке междуионное взаимодействие проявляется гораздо сильнее, чем в воде. Разноименно заряженные ионы образуют ионные пары. Ассоциацию ионов можно обнаружить осмотическими измерениями. В жидком аммиаке легко заметить отличия в междуионном взаимодействии, вызванном неодинаковой плотностью заряда ионов, заряженных одинаково, но отличающихся по размерам. [c.265]

    В молекуле 2п(0Н)о притяжение между ионами цинка и гидроксильными ионами вследствие сравнительно малых размеров радиуса Zn -иона (атомный номер 30)—0,83-10" см больше, чем в молекулах Са(ОН)з, Sr(0H)2 и Ва(ОН),. Поэтому 2п(ОН)г является более слабым основанием, чем указанные гидроокиси. [c.173]

    В молекуле 2п(ОН)2 притяжение между ионами цинка и гидроксильными ионами вследствие сравнительно малых размеров радиуса гп++-иона (атомный номер 30) — [c.203]


    В ДПЭ-растворителях, напротив, сольватация анионов выражена очень слабо. Причиной этого является отталкивание отрицательных основных центров аниона и молекул растворителя. В соответствии с теорией жестких и мягких кислот образование сольватной оболочки около больших поляризуемых анионов (1 , 5СН-, 5 ) возможно только под действием дисперсионных сил (разд. 33.4.3.4). Жесткие же анионы (Р , ОН , ЫН -) в таких средах совершенно обнажены и поэтому проявляют высокую активность в реакциях с нуклеофильными заместителями. Предпочтительная сольватация катионов, вследствие чего образуются сольватные комплексы большого размера, снижает электростатическое притяжение между сольватирован-ными катионами и анионами, у которых практически не имеется сольватной оболочки. Такое состояние ионов в растворе способствует увеличению реакционной способности анионов, которая увеличивается еще и за счет высокой диэлектрической проницаемости растворителя. [c.449]

    В некоторых случаях образование связи между металлом и его лигандами можно объяснить электростатическим притяжением между положительным ионом и отрицательными ионами либо отрицательными концами полярных молекул. В соответствии с этим способность металлов образовывать комплексы обычно повышается с увеличением положительного заряда иона металла и с уменьшением его ионного радиуса. Щелочные металлы, например Ка" и К ,.с трудом образуют комплексы, в то время как двух- и трехзарядные положительные ионы переходных металлов весьма склонны к образованию комплексов. Ионы переходных металлов часто образуют комплексы с гораздо большей легкостью, чем можно предположить, судя только по их размеру и заряду. Например, ион (г = 0,45 А), если судить только по ионному радиусу. [c.370]

    В отличие от ковалентной связи, ионная связь пе обладает направленностью. Это объясняется тем, что электрическое поле иона обладает сферической симметрией, т. е. убывает с расстоянием по одному и тому же закону в любом направлении. Как уже отмечалось выше, система из двух зарядов, одинаковых по абсолютной величине, но противоположных по знаку, создает в окружающем пространстве электрическое поле. Это означает, что два разноименных иона, притянувшиеся друг к другу, сохраняют способность электростатически взаимодействовать с другими ионами. В этом состоит еще одно различие между ионным и ковалентным типами связи ионная связь не обладает насыщаемостью. Поэтому к данному иону может присоединиться различное число ионов противоположного знака. Это число определяется относительными размерами взаимодействующих ионов, а также тем, что силы притяжения разноименно заряженных ионов должны преобладать над силами взаимного отталкивания, действующими между ионами одного знака. [c.144]

    В некоторых неорганических кристаллах связь обусловлена главным образом электростатическим притяжением между положительными и отрицательными ионами. Поскольку кулоновские силы одинаковы во всех направлениях, относительные размеры ионов в значительной степени определяют упаковку ионов в трехмерной решетке. В различных кристаллах радиус одного и того же иона почти одинаков, так как силы отталкивания увеличиваются очень резко по мере того, как межатомное расстояние становится меньше определенной величины. Радиусы ионов галогенов и щелочных металлов можно вычислить довольно просто из размеров элементарной ячейки кристаллов галогенидов щелочных металлов, так как все они относятся к гранецентрированной кубической решетке, за исключением солей цезия, которые кристаллизуются в примитивной кубической решетке. [c.580]

    Выяснение природы химической связи между атомами является одной из основных задач квантовой химии. На основании ряда экспериментальных данных было установлено, что во многих химических соединениях (соли и основания) составные части молекулы представляют собой совокупность положительных и отрицательных ионов, между которыми действуют электростатические силы притяжения. Если ввести эмпирически подбираемый объем иона, т. е. некоторое расстояние, начиная с которого притяжение между противоположно заряженными ионами переходит в отталкивание, то можно на основе классической теории (теория Косселя) объяснить некоторые особенности так называемой ионной, или гетерополярной, химической связи. Однако эта классическая теория использовала ряд представлений (электронное сродство, размеры ионов), которые не могли быть объяснены на основе классической теории. [c.629]


    Возникновение диффузного слоя ионов в растворе вблизи межфазной границы обусловлено равновесием между притяжением (отталкиванием) ионов к заряженному электроду и выравниванием ионных концентраций за счет тепловой диффузии. Это равновесие было теоретически рассмотрено в работах Гуи [2] и Чэпмена [3]. Трактовка этих авторов близка к теории сильных электролитов Дебая-Хюккеля. Теория Гуи-Чэпмена основана на ряде не вполне строгих предположений. Например, в этой теории ионы рассматриваются как точечные заряды, а также принимается, что при переносе ионов к границе раздела фаз затрачивается лишь электростатическая работа. Поэтому теория Гуи— Чэпмена является точной лишь для разбавленных растворов. Далее, в этой теории принимается, что роль растворителя в электрическом взаимодействии между ионом и электродом можно учесть с помощью макроскопической диэлектрической проницаемости. Это предположение в электрохимической теории весьма распространено и зачастую неизбежно, однако его пригодность для описания электростатических взаимодействий на расстояниях, сравнимых с молекулярными размерами, в высшей степени сомнительна. Тем не менее простую теорию двойного слоя с успехом применяли к целому ряду растворителей в различных условиях. Успехи теории частично объясняются тем обстоятельством, что в области ее несостоятельности (при больших концентрациях электролита или больших напряжениях) диффузный слой слабо влияет на свойства двойного слоя. Вывод основных уравнений диффузного слоя довольно прост и будет опущен. Подробное рассмотрение вопроса читатель найдет в обзоре Грэма [7]. [c.67]

    При переходе вдоль группы сверху вниз энергии ионизации уменьшаются главным образом за счет увеличения размеров атомов, так что притяжение между электроном и возникающим при его отрыве катионом убывает. Существует еще дополнительный фактор, благодаря которому потенциалы ионизации элементов первого и второго коротких периодов особенно велики. Дело в том, что у этих атомов около ядра имеется сравнительно мало электронов, так что эффективный заряд остающегося иона (поскольку рассматривается притяжение между ним и электроном) значительно больше полного числа отрывающихся электронов. Другими словами, остающиеся электроны не обеспечивают столь эффективного экранирования ядра, как в следующих периодах. Это является одной из главных причин качественного отличия, которое часто наблюдается между первым и вторым элементами группы периодической системы и последующими элементами той же группы. [c.78]

    Для соединений металлов с неметаллами состава 1 1 известны три различные структуры — структура хлористого цезия с координационным числом восемь, структура хлористого натрия с координационным числом шесть и структура сульфида цинка с координационным числом четыре. Представляет интерес вопрос о том, какая из этих структур наиболее вероятна в каждом конкретном случае. Если предполагать, что соединение — ионное, то наиболее существенным фактором, определяющим структуру, является отношение радиуса аниона к радиусу катиона. Естественно предположить, что стабильность максимальна, если анионы соприкасаются с катионами, а не друг с другом. При ином положении отталкивание между анионами может перевесить притяжение между анионами и катионами. Предположим теперь, что соль АХ имеет структуру хлористого цезия, в которой выполняются сформулированные выше условия и размер катионов А постепенно уменьшается. Окружающие анионы X подходят все ближе друг к другу и наконец начинают соприкасаться. Дальнейшее уменьшение размеров катионов приведет к тому, что каждый анион будет соприкасаться со всеми окружающими его анионами, а это вызовет уменьшение стабильности (см. рис. 68). При таком положении весьма вероятно изменение структуры с переходом в структуру с меньшим координационным числом — структуру хлористого натрия. При дальнейшем уменьшении радиуса катиона снова наступит момент, когда анионы начнут соприкасаться друг с другом, и можно ожидать перехода в структуру с еще меньшим координационным числом (структуру сульфида цинка). Простое вычисление показывает, что предельные отношения радиусов гд/гх для трех типов структур равны  [c.243]

    Растворы неэлектролитов. Диффузия. Осмос. Растворы, в которых нет (или почти нет) ионов, практически не проводят электрического тока, из-за чего их называют неэлектролитами, в отличие от растворов электролитов, которые содержат ионы и проводят ток. Если представить себе раствор очень малой концентрации, в котором молекулы растворенного вещества практически не взаимодействуют друг с другом (силы притяжения между молекулами в растворе почти отсутствуют из-за того, что среднее расстояние между ними велико по сравнению с их собственными размерами), то поведение этих молекул в растворе будет во многих отношениях аналогично поведению идеального газа. Доказательством правильности такого сравнения является ряд общих свойств, наблюдаемых как у газов, так и у растворов. Аналогия с газами проявляется в способности растворенного вещества к диффузии и в результате этого к возникновению давления, получившего название осмотического. [c.102]

    В растворах электролита преобладающим взаимодействием между ионами является кулоновское притяжение и отталкивание, обусловленные их электрическими зарядами. Эти силы обратно пропорциональны квадрату расстояния между ионами. Кроме этих кулоновских сил, действуют также вандерваальсовы силы, не зависящие от наличия свободных электрических зарядов. Их действие, однако, обратно пропорционально более высокой степени расстояния между частицами, и поэтому область их эффективного действия намного короче, чем область действия кулоновских сил. Вандерваальсовы силы значительны только между соседними частицами, в то время как кулоновские силы могут действовать на расстояния в несколько атомных диаметров. Следовательно, некоторые свойства разбавленных растворов сильных электролитов можно описать в достаточно хорошем приближении, если учитывать только электростатическое притяжение и отталкивание. Однако законы электростатики относятся к макроскопическим явлениям, и поэтому условия, существующие на расстоянии порядка величины атомных размеров, можно описать при помощи этих законов только приблизительно путем введения упрощающих предположений. [c.467]

    Все устойчивые одноатомные анионы имеют электронное строение соответствующего для данного периода благородного газа, а простейшие катионы имеют электронное строение благородного газа, предшествующего данному периоду (сравните, например, N3" и N6, К- и Аг и т. д.). В от личие от ковалентной иогаая связь не обладает ни направленностью, ни насыщаемостью. Силы притяжения между зарядами пе зависят от направления, по которому эти заряды сближаются (отсутствие направленности). Кроме того, два разноименных иона, связанные силами притяжения, не теряют своей способности взаимодействовать с ионами противоположного знака. В этом и проявляется отсутствие насыщаемости у ионной сэязи. Следствием этой особенности ионной связи является ассоциация всех ионов с образованием ионного кристалла, в котором каждый ион окружен ионами противоположного знака. Число ионов противоположного знака, удерживающихся данным ионом на ближайшем расстоянии, получило название координационного числа данного иона. Ионы могут удерживать также и нейтральные молекулы. При большом размере катиона и малом радиусе аниона (соотношение кат "аи > 0 3) вокруг катиона (аниона) координирует 8 анионов (катионов). В результате образуется кристалл так называемой кубической структуры — 8 ионов одного знака располагаются в вершинах куба, в центре которого находится ион противоположного знака (тип СзС1 рис. 14). [c.82]

    Чтобы ответить на этот вопрос, прежде всего следует узнать, игнорируя возможности метастабильности (которая возникает редко), какое пространственное расположение будет принимать соединение при условии самой высокой стабильности, т. е. наинизшей энергии. Факторы, которые вносят вклад в энергию,— это силы притяжения между противоположно заряженными ионами, которые увеличиваются с возрастанием координационного числа, и силы отталкивания, которые будут очень быстро возрастать, если ионы одного и того же знака заряда сдавливаются вместе. Таким образом, оптимальное расположение в любом кристалле должно быть таким, чтобы оно позволяло наибольшему числу противоположно заряженных ионов касаться и не требовало никакого сдавливания ионов одинакового заряда. Способность данной структуры удовлетворить эти требования зависит от относительных размеров ионов. [c.64]

    Тепловое расширение. Коэффициенты теплового расширения р ионных кристаллов в большинстве случаев невелики, так как силы взаимного притяжения ионов значительны. На величину р влияет размер ионов. Чем больше расстояние между ионами, вследствие изменения размера аниона, тем больше коэффициент Р в кристалле (табл. 5.27). Чем выше валентность ионов при почти равных расстояниях между ионами, тем меньше величина р (табл. 5.28). [c.167]

    Принцип Пирсона выше рассматривался как эмпирическое правило до сих пор химики еще не нашли точного его объяснения. Простейший подход к объяснению преимущественного взаимодействия жестких реагентов с жесткими и мягких реагентов с мягкими может базироваться на электростатических представлениях. Большинство типичных жестких кислот и оснований (Li+, Ыа+, К+ и р-, ОН-) образуют между собой ионные связи. Энергия Маделунга для ионной пары обратно пропорциональна межатомному расстоянию, поэтому чем меньше размеры ионов, тем сильнее притяжение между ними. [c.218]

    Ионные кристаллические решетки. Для веществ с ионной связью характерна ионная кристаллическая решетка, в узлах которой находятся разноименно заряженные ионы, геометрически правильно расположенные относительно друг друга и связанные силами электростатического притяжения. В результате этого кулоновские силы, действующие между ионами, обеспечивают прочность кристаллической решетки и на отрыв ионов требуется довольно большая затрата энергии. В зависимости от размера и заряда иона вокруг него может группироваться разное число ионов другого знака. Это число носит название координационного числа. Благодаря склонности к ассоциации соединения с ионной связью дают кристаллические решетки с высокими координационными числами. [c.71]

    Несомненно, одним из важнейших факторов, определяющих растворимость, является притяжение между ионами кристалла. Кристаллы, построенные из небольших ионов, которые упакованы более плотно, как правило, сильнее сопротивляются разрушению, чем кристаллы, состоящие из больших ионов. Поэтому, если сравнивать различные соли с одинаковым катионом, ясно, почему фториды (Р ) и гидроксиды (ОН ) обладают меньшей растворимостью, чем нитраты (N0 ) и перхлорагы (СЮ ). В указанном ряду анионов хлорид-ионы имеют промежуточный размер, и поэтому свойства хлоридов трудно предсказать, основываясь на указанных общих соображениях. [c.248]

    В результате притяжения между ионом и дипольными молекулами воды электростатическая свободная энергия иона понижается то же происходит и в том случае, когда ион притягивает другие ионы с противополояшым знаком заряда, в результате чего его собственный заряд уменьшается или полностью нейтрализуется. Иногда при таком взаимодействии образуется даже противоположно заряженный комплекс большого размера с настоящей химической связью. Закономерности взаимодействия этого типа отличаются большой сложностью мы не будем на них останавливаться. ОднаКо сам факт существования таких комплексов и их природа могут -быть установлены на основании независимых экспериментов. В некоторых случаях ионообменные процессы могут быть даже использованы для определения степени комплексообразования (см. главу 7). Способность ионов металлов образовывать различные комплексные ионы представляет большой интерес и составляет одну из полезных ст.орон ионообменных процессов. Ясно, что применение элюентов или функциональных групп ионита, способных переводить некоторые ионы в комплексную форму, должно существенно влиять на поведение этих ионов при обмене. [c.181]

    Такого рода растворы похожи на растворы солей типа КС и СаС1а, в которых размеры положительных и отрицательных ионов примерно одинаковы. Следовательно, как и в растворах таких простых ионов, в рассматриваемом случае будет иметь место суммарная сила притяжения между ионами, которая дает отрицательный вклад в химический потенциал его можно рассчитать прямым путем с помощью теории Дебая—Хюккеля, по крайней мере, для предельного случая очень низких концентраций, когда индивидуальные ионы находятся на относительно больших расстояниях друг от друга. При этих условиях то обстоятельство, что ион с суммарным зарядом 2, скорее может состоять из большого количества отдельных положительных и отрицательных зарядов вместо заряда 2 , сконцентрированного в одной точке, не будет иметь большого значения. [c.271]

    G полным основанием можно ожидать, что сами ионы Mg + и SOJ- имеют приблизительно одинаковые объемные свойства (одни и те же размеры) в водном растворе и в кристалле. Понижение мольного объема на 51,7 мл.мольможно объяснить, исходя из допущения, что молекулы воды обладают более плотно упакованной структурой вблизи ионов п сравнению с упаковкой в обычной воде, что является результатом притяжения между ионами и молекулами воды такое уменьшение объема называется алектрострищией. [c.419]

    С увеличением концентрации раствора, т. е. с увеличением плотности заряда 1, электростатические силы притяжения между поверхностью металла и ионами противоположного знака заряда, расположенными со стороны раствора, растут, и степень диффузностн уменьшается. Напротив, разбавлегшые растворы, в которых двойной слой обладает большей диффузностью, больше должны подчиняться теории Гуи-Чапмена. Однако согласно этой теории, ионы отождествляются с материальными заряженными гочками, размеры которых не учитываются, т. е. диффузионный слой может иметь размеры меньше ионных радиусов. Это приводит к завышенным значениям емкости. [c.102]

    Связь между активными (вариабельными) участками антитела и гаптеном или гаптеновой группой антигена не является ковалентной связью, а представляет собой результат ряда слабых взаимодействий — электронного вандерваальсова взаимодействия, образования водородных связей, притяжения между группами, несущими различный электрический заряд. Эти типы слабых взаимодействий в совокупности обеспечивают достаточно сильное притяжение, способное противостоять разрыву, вызываемому тепловым движением. С увеличением расстояния между взаимодействующими группами силы, обеспечивающие связывание, быстро ослабевают. Поэтому для эффективного взаимодействия связывающий участок антитела должен быть строго комплементарен по форме, размеру и положению соответствующим группам гаптена (на рис. 15.19 показана комплементарность гаптена — иона п-азосук-цинаннлата — и антитела). [c.449]

    ДЛЯ галогенидов щелочных металлов. Отметим, что энергия решетки возрастает по мере уменьшения размеров катиона или аниона. Например, она систематически возрастает в рядах Lil, LiBr, Li l, LiF или sF, RbF, KF, NaF, LiF. В первом из этих рядов происходит последовательное уменьшение размеров галогенид-иона (при постоянном ионном заряде), а во втором ряду — уменьшение размеров иона щелочного металла. Наблюдаемые изменения энергии решетки на самом деле обусловливаются не только электростатическим притяжением ионов, которое характеризуется ионным потенциалом. Определенную роль играют и такие факторы, как изменение сил отталкивания между ионами с зарядами одного знака, а также степень деформации ионов под действием окружающего их электрического поля. Оба эти фактора в свою очередь в какой-то мере зависят от взаимного расположения ионов в кристалле и от их ионного потенциала (подробнее об этом см. гл. 10). Данные факторы проявляются не столь заметно при сопоставлении энергий решетки различных галогенидов щелочных металлов, но приобретают важное значение при сравнении свойств веществ, состоящих из ионов с более высоким ионным потенциалом или имеющих не такое электронное строение, как у атомов благородных газов. В рассматриваемом случае налицо преобладающая роль ионного потенциала. [c.131]

    В некоторых случаях имеет значение то, что лиганд оказывается намного больше катиона по размерам. Эта причина может привести к ограничению координационного числа катиона, поскольку она делает физически невозможным присоединение к нему нескольких лигандов. Например, экспериментальные наблюдения показывают, что если отношение радиусов катиона и лигандов ГкатионаАлиганда меньше 0,155, максимальное координационное число не может превышать двух. Как видно из рис. 23.4, третьему катиону не удается в этом случае подойти достаточно близко к центральному иону, чтобы между ними возникла химическая связь. Однако и в тех случаях, когда отношение указанных радиусов очень мало, более важным фактором остается баланс сил притяжения лигандов к центральному катиону и сил отталкивания между лигандами. Это иллюстрируется сопоставлением комплексов двухвалентной и четырехвалентной платины. Ион двухвалентной платины имеющий радиус 0,93 А, обычно образует комплексные соединения с координационным числом четыре, а ион четырехвалентной платины с радиусом 0,69 А имеет координационное число шесть. Более высокий заряд иона влияет на координационное число гораздо существеннее, чем ограничения, обусловленные его меньшим радиусом. [c.408]

    Для большинства разбавленных кремнеземных золей при рН 2, когда на частице находится лишь слабый ионный заряд, при воздействии на систему электролитом никакой коагуляции не будет наблюдаться, по-видимому, из-за гидратного слоя. Однако Хардинг [237] обратил внимание на тот факт, что относительно большие по размеру коллоидные частицы кремнезема, диаметром 50—100 нм или более, начинают флокулировать при низких значениях pH, тогда как небольшие частицы еще не подвержены этому процессу. Остается определить, обусловливается ли флокуляция вандерваальсовыми силами притяжения между частицами или же образованием многократных водородных связей между покрытыми силанольными группами поверхностями в пределах области контакта частиц при их столкновении. [c.508]

    При тщательном контролировании условий эксперимента большие по размеру частицы кремнезема могут быть скоагули-рованы и отделены от меньших частиц. Необходимое для коагуляции критическое число ионов кальция определяется как количество таких ионов, адсорбированных на одном квадратном нанометре поверхности кремнезема независимо от размеров его частиц но чтобы достичь такой величины адсорбции в том случае, когда частицы становятся меньшими по размеру, в растворе должна поддерживаться более высокая концентрация ионов кальция. На поверхности кремнезема, которая уже несет отрицательные заряды, каждый адсорбированный ион кальция освобождает только один ион водорода, образуя при этом один дополнительный отрицательный заряд на кремнеземной поверхности. Таким образом, каждый адсорбированный ион кальция сохраняет за собой один единичный положительный заряд (см. также [255]). Для частиц меньших размеров вследствие их более сильно искривленной поверхности каждый ион кальция, адсорбированный на внешней стороне поверхности частицы, будет отталкиваться от своих соседей по поверхности, причем результирующая сила будет направлена от поверхности кремнезема, поэтому для поддержания критической концентрации коагуляции адсорбированных ионов кальция требуется их более высокая концентрация в растворе. Коагуляция, вероятно, обусловлена силами притяжения между поверхностями частиц кремнезема, несущими на себе мозаично расположенные положительно и отрицательно заряженные участки. [c.523]

    Многие свойства кристаллического хлористого натрия определяются строением кристалла этой соли, той устойчивостью, которой характеризуется связь между ионами натрия и ионами хлора, возникающая при образовании кристалла. Плотность кристалла определяется равновесным расстоянием между ионами, а следовательно, размерами ионов. Способность данных кристаллов образовывать при своем росте кубические формы с плоскими гранями, расположенными под прямыми углами, и их кубическая спайность (способность расслаиваться вдоль граней куба при механическом дроблении) определяется кубической симметрией расположения ионов. Твердость кристаллов и их высокая точка плавления являются результатом электростатического притяжения между противоположно зарян енными ионами,  [c.161]

    Возможны однако, и более тонкие случаи комплексообразования между катионом и анионом они также охватываются понятием (.(взаимодействие между ионами . Сюда относится, например, взаимодействие иона с ионным облаком, или, иначе говоря, воздействие, испытываемое ионом со стороны окружающих его ионов (среди которых противоположно заряженные расположены ближе). Такое взаимодействие рассматривается в теории Дебая — Хюк-келя [36]. Взаимодействие другого типа связано с тем, что при сближении противоположно заряженных ионов они могут в течение короткого периода времени (порядка нескольких молекулярных столкновений) оставаться вместе под действием сил кулоновского притяжения. Бьеррум [32] предложил формальный способ описания таких ионных пар, согласно которому два иона могут рассмат-, риваться как ионная пара, если расстояние между ними не превышает критического расстояния с , определяемого соотношением е /ес > 2 Г. Смысл этого соотношения состоит в том, что взаимная электрическая потенциальная энергия двух ионов должна быть не меньше, чем их тепловая энергия. Образование ионных пар этого типа для водных растворов с высокой диэлектрической постоянной нехарактерно ему обычно подвержены лишь многозарядные ионы. Однако образование этих ионных пар в фазе ионита все же возможно, так как эффективная диэлектрическая постоянная в фазе иоцита значительно ниже, чем в разбавленных водных растворах (раздел 11.1). Поэтому мы не можем пренебречь этим видом взаимодействия, которое тем сильнее, чем меньше размеры ионов и чем выше их заряды. Само собой разумеется, что вероятность образования ионных пар увеличивается с ростом концентрации ионов. [c.182]

    Рассматривая направление [110] в той же плоскости (110), мы видим, что оно состоит из ионов одного знака, чередующихся рядом ионов противополажвого знака в следующем слое. Скольжение в этой плоскости будет происходить при постоянном притяжении между скользящими поверхностями. Только размер притяжения будет периодически меняться. Такое перемещение будет походить на движение вагона по рельсам. [c.251]

    Рассматривая теплоту активации для вязкого течения, Яффе и Ван-Артсдален [29] постулировали, что изменение этой величины с температурой зависит от двух или более факторов. Так как при нагревании расплав расширяется, то кулоновские силы, действующие между ионами, должны уменьшаться, а значит, с увеличением температуры должна уменьшаться и теплота активации. В противоположность этому эффекту при расширении жидкости с ростом температуры координационное число в расплаве уменьшается (благодаря увеличению числа дырок). Таким образом, сила притяжения к ближайшему соседу увеличивается, а это, согласно Яффе и Ван-Артсдалену, приводит к увеличению теплоты активации. Последний эффект становится больше, если катион и анион сильно различаются по размеру. Поэтому для солей лития и натрия энергия активации растет с температурой, тогда как для солей калия, рубидия и цезия наблюдается обратное явление. [c.221]


Смотреть страницы где упоминается термин Размеры ионов—. Притяжение между ионами: [c.254]    [c.121]    [c.136]    [c.121]    [c.118]    [c.512]    [c.324]    [c.151]    [c.111]    [c.151]   
Смотреть главы в:

Физическая биохимия -> Размеры ионов—. Притяжение между ионами




ПОИСК





Смотрите так же термины и статьи:

Ионная размеры



© 2025 chem21.info Реклама на сайте