Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы образование оксидных слоев

    Механизм электролитического оксидирования алюминия можно свести к следующей схеме. Вначале при малой плотности тока начинается окисление металла, и ионы его переходят в раствор. Насыщение прианодного слоя ионами А1 создает условия для образования на поверхности анода тонкой пленки основной соли алюминия. Вследствие химической поляризации потенциал анода повышается и, наконец, достигает значений, превышающих потенциал выделения кислорода в данном растворе. Тогда начинается окисление молекул воды. Выделяющийся кислород взаимодействует с алюминием, образуя оксидный слой. Схемы процессов при анодировании [c.218]


    Имеется, однако, много примеров, когда потенциал иассивации нельзя связать с образованием ни одного из известных для данного металла оксидов. Так, иапример, для железа потенциал пассивации < п=+0,58 В, в то время как наиболее положительный из всех возможных потенциалов железооксидных электродов, отвечающий системе Fe, FeO, FeaOa, равен всего лишь 0,22 В. Казалось бы, что, поскольку железный электрод здесь является анодом, такая разница обусловлена значительной анодной поляризацией. Но такое объяснение отпадает, потому, что потенциал активации железа также равен +0,58 В, хотя железный электрод поляризуется в данном случае катодно. В связи с этим предположили, что, несмотря на преимущественное растворение железа в виде двухвалентных ионов, оксидная пленка может образоваться при участии иоиов железа с валентностью более трех. Это возможно при условии постепенного окисления железа избытком кислорода в поверхностном слое. В подобном оксидном слое могут поэтому находиться наряду с оксидами F O и РегОз также высшие оксиды, наиример КеОг, которым отвечают более положительные потенциалы. Аналогично объясняется и пассивация никеля. [c.482]

    Остановимся на некоторых особенностях строения и роста фазовых оксидных слоев. По структуре и свойствам эти слои делят на сплошные (плотные) и пористые. Примером сплошных слоев могут служить пассивирующие слои на тантале, цирконии, алюминии, ниобии. Сплошные слои имеют стеклообразную или аморфную структуру, обладают достаточно большим электрическим сопротивлением и иногда проявляют выпрямляющее действие, проводя ток лишь тогда, когда металл является катодом. Типичным примером пористых слоев могут служить оксидные и гидроксидные слои на кадмии, цинке, магнии. Эти слои имеют кристаллическую структуру и низкое электрическое сопротивление (порядка нескольких омов). Возможно также образование слоев смешанного типа. Так, на алюминии в сернокислых растворах можно наблюдать сплошной слой со стороны металла и пористый со стороны раствора. Кроме того, при поляризации электрода или во времени могут происходить переход одного типа слоя в другой, кристаллизация аморфных слоев, изменение их состава и структуры. [c.368]

    Марганец - твердый хрупкий неблагородный. металл в компактном состоянии серебристо - белого цвета, на воздухе принимает серую окраску вследствие образования оксидного слоя. [c.45]

    Если образование оксидного слоя при высокой температуре сопровождается интенсивной диффузией кислорода внутрь металла, то это приводит к изменению его состава за счет окисления легирующих компонентов. Особенно это заметно на конструкционных сталях, в поверхностных слоях которых происходит окисление углерода — ферритная полоска, образование которой сопровождается потерей прочности, особенно для тонкостенных изделий. Взаимодействие сталей с окисляющими средами можно представить в виде следующих уравнений  [c.512]


    Электроды из благородных металлов в ИВА применяются редко. Это обусловлено весьма низким перенапряжением водорода на электродах из платины, золота, серебра, иридия, родия, палладия, а также на электродах из сплавов этих металлов. Другим ограничением является образование оксидных слоев на поверхности указанных электродов или растворение металлов при положительных потенциалах (например,для золота при +0,9 -г +1,0 В). Осложняющим обстоятельством является и взаимодействие материала электрода с выделяющимися металлами, что служит источником систематической погрешности. [c.416]

    Свойства (см. также табл. 41). Твердый хрупкий неблагородный металл, имеет цвет железа, на воздухе принимает серую окраску вследствие образования оксидного слоя. Реагирует с горячей водой и кислотами с образованием соединений марганца (И). [c.420]

    Изменение состава металла в результате газовой коррозии. Образование оксидного слоя сопровождается диффузией кислорода внутрь металла и в результате этого может наблюдаться окисление легирующих элементов. [c.515]

    В пленочной теории, по которой наступление пассивного состояния связано с поверхностным оксидным слоем, большое внимание уделяется его возникновению и формированию. Основными факторами, определяющими этот процесс, являются потенциал металла, а также концентрации ионов металла и ОН- Потенциал металла должен быть достаточно положительным для того, чтобы обеспечить устойчивое состояние данного оксида. Концентрации металлических и гидроксильных ионов должны быть достаточно велики, чтобы стало возможным образование соответствующих основных солей или гидроксидов, последующие превращения которых приводят к пассивирующим оксидам. Пассивность должна наступать тем легче, чем выше электродная поляризация ири анодном растворении металла и чем ниже скорость удаления ионов металла от поверхности электрода. [c.483]

    Таким образом, металлы, которые в ряду стандартных потенциалов находятся отрицательнее этого потенциала, окисляются ионами водорода из воды. К таким металлам относятся прежде всего щелочные и щелочноземельные металлы, которые энергично реагируют с водой. Некоторые другие металлы, например алюминий, магний и цинк, весьма медленно растворяются в воде из-за высокого перенапряжения процесса выделения водорода на этих металлах. Важную роль при этом играет пассивация, вызванная образованием тонкого и прочного оксидного слоя на поверхности металла. [c.417]

    Таким образом, для понимания механизма пассивации необходимо изучение закономерностей образования, роста и свойств оксидных слоев. Для этого используют разнообразные электрохимические, а также оптические методы (см. 17), из которых особый интерес представляет эллипсометрический метод, позволяющий исследовать состояние поверхности металла непосредственно при измерении потенциостатических поляризационных кривых. Был разработан иодидный метод отделения пассивирующей пленки от металла, который основан на том, что раствор 1а+К1 проникает через поры пленки к поверхности металла и растворяет его. Отделенный от металла тонкий пассивирующий слой может быть далее подвергнут электронно-микроскопическому ис- [c.367]

    Окружающий нас мир представляет собой материю, существующую в бесконечном разнообразии видов, которые непрерывно переходят друг в друга. Например, в недрах звезд и нашего Солнца прк температурах 10— 20 млн. градусов происходит превращение водорода в гелий. При этом освобождаются колоссальные количества энергии, которые в виде излучения достигают Земли. Под влиянием энергии солнечного света растения превращают диоксид углерода в сложные органические соединения и освобождают кислород. Кислород участвует в процессах окисления, которые всегда идут с выделением тепла. Из этих примеров видно, что материя и энергия неразрывно связаны. Все процессы, совершающиеся в природе, в ходе которых изменяется состояние материи, сопровождаются и изменение энергии. Большинство подобных процессов включают в себя химические реакции. Образование залежей каменных углей и нефти связано с цепью сложных химических реакций, в которых участвовали остатки растений и морских животных и другие вещества, находившиеся миллионы лет под воздействием тепла Земли и высоких давлений. Происхождение залежей руд также связано с протеканием многочисленных химических реакций. По мере остывания расплавленного вещества Земли тяжелые металлы, взаимодействуя с кислородом и серой, образовали сульфидно-оксидный слой, расположившийся над железо-никеле- [c.13]

    Химическая поляризация изменяет поверхность электрода за счет реакций со средой или электролитом при прохождении электрического тока. Этот очень важный вопрос для машино- и приборостроительной технологии и для защиты от коррозии фундаментально изучен Н. Д. Томашевым. Он исследовал изменения потенциала растворяющегося анода в зависимости от плотности тока в процессе. Результат исследования представлен потенциостатической кривой, имеющей общий характер для всех растворяющихся анодов (рис. 133). На кривой показаны области концентрационной поляризации, переходящей в химическую, сначала с выделением рыхлых гидроксидных пленок, а затем и с образованием почти непроводящих оксидных слоев, что соответствует полной пассивации металла (анодирование). [c.248]


    Первая стадия образования оксидного слоя — адсорбция (хемосорбция) кислорода. На платине процесс на этой стадии прекращается и на ее поверхности находится в зависимости от условий незаполненный или заполненный монослой адсорбированного кислорода. На других металлах образование слоя продолжается. После того, как толщина i i достигает 2—3 атомных размеров, слои превращается в отдельную поверхностную фазу кристаллического (реже аморфного) строения со свойствами, аналогичными свойства.м соогветствую1цих объемных оксидов. [c.332]

    Так как под воздействием электролита оксидная пленка растворяется, то рост ее будет зависеть от относительных скоростей образования и растворения барьерного слоя. При равенстве этих скоростей толщина барьерного слоя сохраняется практически постоянной. При этом с внешней стороны барьерный слой под действием электролита разрыхляется и в нем образуются поры. В порах (d = 0,05- 0,l мкм), заполненных электролитом, происходит дальнейшее формирование нового барьерного слоя. Таким образом, оксидная пленка растет за счет образования пористого слоя, продвигаясь в глубь металла (см. рис. 3.36). Толщина анодных пленок для каждого условия проведения процесса имеет свой предел, до которого возможен их рост. [c.343]

    I может иметься участок (заштрихованный на рис. 2.2), в котором материал покрывается чрезвычайно тонкими оксидными неравновесными слоями. Такая химическая пассивность в техническом отношении не отличается от пассивности, обеспечиваемой благодаря образованию поверхностного слоя. В обоих этих случаях скорость коррозии хотя и очень мала, но не обращается в нуль как в области III, соответствующей термодинамической устойчивости металла. Кроме того, сохраняется названная выше скрытая опасность поражения местной коррозией. [c.52]

    Исследования, проведенные на никеле, кобальте, меди и других металлах [41], показывают, что дифференциальные теплоты адсорбции уменьшаются с увеличением степени заполнения поверхности кислородом (рис. 10). Возникновение площадок связывается с формированием оксидных слоев и с теплотами образования объемных оксидов. Показано, что имеется соответствие между теплотами адсорбции кислорода и теплотами образования индивидуальных оксидов. Согласно общему правилу, сформулированному К. Танаку и К. Тамару,, теплоты хемосорбции кислорода на различных металлах могут быть определены из эмпирического уравнения  [c.36]

    Полученные данные лншь частично > арактеризуют активное, пассивное II трапспассивпое состояния металлов и определяют условия, при которых можно ожидать реализации каждого из них. Они ничего не говорят о причинах перехода металла из активного состояния в пассивное и из пассивного е1 транспассивное. Для объяснения явления пассивности были предложены две теории — пленочная и адсорбционная. В пленочной, или фильмовой (Кистяковский), теории пассивности, берущей начало от Фарадея, предполагается, что переход металла из активного состояния в пассивное вызван образованием на его поверхности тонкого, обычно оксидного, слоя, отделяющего металл от окружающей среды и препятствующего, таким образом, его растворению. Образующийся оксидный слой имеет толщину в несколько молекулярных слоев, и его можно рассматривать как фазовый оксид. Чем совершеннее структура оксидного слоя, чем меньше в нем разрывов и дефектов, тем полнее пассивация и тем меньше скорость растворения металла в пассивном состоянии. Одним из доказательств справедливости пленочной теории служит от факт, что для многих металлов, например для меди, [c.481]

    Так, например, хром и никель в нержавеющих сталях, диффундируя к поверхности, образуют оксидный слой, содержащий шпинель Ni r204 и частично шпинель РеСггО . Оксидный слой такого состава оказывается более устойчивым, чем просто оксид СГ2О3, образующийся на поверхности чистого хрома. Поверхностное легирование представляет собой насыщение поверхности данного сплава металлом, обладающим прочным оксидным слоем, — аллитирование, хромирование, силицирование и т. д. Оно осуществляется диффузионным путем из газовой фазы, содержащей пары или летучие соединения легирующего компонента, или нанесением слоя этого металла вакуумным напылением, плазменным напылением или даже наплавкой, но обязательно с последующей термообработкой изделия. При нанесении на поверхность данного металла легирующего компонента возможно образование между ними интерметаллидов. [c.540]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых оксидных или солевых пленок, возникающих при растворении металлов. Образование оксидных пленок — причина устойчивости многих металлов, например алюминия. Из рис. IX. 6 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют также, напыляя более благородный металл на защищаемый, используя благородные металлы в качестве легирующих добавок или протекторов. В результате основной металл поляризуется анодно и переходит в пассивное состояние. Переход в пассивное состояние может вызвать присутствие в растворе окислителей, например кислорода и др. (рис. IX. 6). Так, пассивацию железа вызывают концентрированные HNOa и H2SO4, что позволяет использовать железную тару для перевозки серной и азотной кислот. Образование оксидных слоев сильно влияет не только на анодное растворение металлов, но приводит к ингибрированию и многих других электродных процессов. Поэтому изучение механизма пассивации, процессов образования, роста и свойств оксидных слоев на металлических электродах — важная задача современной электрохимии. [c.258]

    Мы называем явлением пассивации любое явление, приводящее к сильному возрастанию сопротивлений реакции перехода металлических ионов из металла в ванну (10]. Электрод находится в условиях пассивности , когда анодная плотность тока уже больше не влияет. В случае металлов в водной среде изучение явлений пассивации и условий пассивности составило объект многочисленных исследований. Изучение аналогичных явлений в случае ванн с расплавленными солями, наоборот, почти полпостью нренебрегалось. В наших опытах с твердыми электродами в расплавленных солях мы встретились с явлениями пассивации, которые можно приписать существованию ранее образованных оксидных слоев п образованию слоев повторного покрытия (в частности, оксидных или аналогичных соединений) в результате локальной реакции электродов с ванной или вследствие прохождения тока . Пассивация в расплавленных солях имеет несколько общих свойств с пассивацией в водной среде (кроме высоких значений сопротивления реакции), в частности существование условий неустойчивости, могущее приводить также к явлениям периодических колебаний. В случае электродов Mg — (Mg l2+ K l) наблюдается, что при плавлении металла, пассивного в твердом состоянии, сопротивления реакции резко уменьшаются. [c.327]

    При температурах 473—573 К образование оксидных слоев на поверхности металлов и сплавов ускоряется. В частности, на железе и сталях перлитного класса в этих условиях образуются защитные оксидные слои магнетита РСз04. Увеличение оксидных слоев идет по закона.м твердофазной поверхностной диффузии. [c.68]

    Газовой коррозии подвергается режущий инструмент при большой скорости обработки металлов, лопатки газовых турбин, выхлопные патрубки, сопла и другие элементы реактивных двигателей она же наблюдается в электроплавильных печах и т. д. Наиболее частый результат газовой коррозии — образование на поверхности металла оксидов. Если оксидная пленка прочна, компактна и хорошо сцепляется с поверхностью металла, то она сообщает металлу некоторую пассивность при низкой температуре, так как затрудняет доступ кислорода к его поверхности. Такого рода оксидные пленки образуются в сухом воздухе на тантале, бериллии, алюминии и других металлах. Толщина пленки, образованной в естественных условиях, порядка 3—5 нм. Изменение толщины оксидного слоя во времени может свидетельствовать о скорости процесса окисления. Соответствующие кривые, построенные в координатах толщина пленки — время, являются кинетическими кривыми окис- ления. Чаще всего толщина пленки растет пропорцио-пально корню квадратрюму из времени (параболический закон) или пропорционально логарифму времени и реже— пропорционально времени в первой степени (линейный закон). [c.276]

    Проблема структуры и свойств анодных оксидных слоев на электродах относится к числу важнейших проблем электрохимии. Однако даже для простейших модельных систем эта проблема далека от разрешения, что связано с ее большой сложностью и многоплановостью. Наиболее подробно строение и свойства оксидных слоев исследованы на металлах группы платины. На этих металлах было обнаружено образование слоев адсорбированного кислорода, хемосорбционных оксидных слоев, полислоев фазового оксида, а также подползание кислорода под поверхностный слой металла. Для адсорбционных и хемо- [c.371]

    В изложенной схеме не учитывается участие ионов раствора в оксидном слое. Такое участие становится ярко выраженным при высоких анодных потенциалах ,>1,6 В, где анодная оксидная пленка на платиновых металлах формируется с участием кислорода, ионов фона и продуктов их разряда, причем компоненты раствора включаются в пленку необратимо. Кислородные пленки на платине при потенциалах окисления выше 1,6 В включают в свой состав три формы хемосор-бированного кислорода, которые отличаются друг от друга кинетикой образования и восстановления, а также энергией связи с поверхностью. Характерно, что зависимость адсорбции анионов и катионов от потенциала в области высоких анодных потенциалов носит полиэкстре-мальный характер, и часто максимуму адсорбции катионов отвечает минимум адсорбции анионов и наоборот. На глубоко окисленных платиновых металлах обнаружена адсорбция органических соединений различных классов (Л. А. Миркинд, М. Я. Фиошин). [c.372]

    При контакте с алюминием соляная кислота сначала реагирует с тонким оксидным слоем на его поверхности, а затем уже с самим металлом. Реакция алюминия с соляной кислотой приводит к образованию хлорида ашоминия и водорода. [c.435]

    При взаимодействии газообразного кислорода с металлом на последнем возникает оксид, который, если он не летучий, образует поверхностный слой, предохраняющий металл от дальнейшего окисления. В общем случае химическая реакция между металлом и газообразным кислородом, приводящая к образованию оксидной фазы, описывается простЫ1М уравнением хМе+у1 (202) = = МвхОу. Однако несмотря на кажущуюся простоту этой реакции, характер окисления и кинетика роста оксидных слоев зависят от ряда факторов, существенно усложняющих механизм процесса окисления металлов. [c.33]


Смотреть страницы где упоминается термин Металлы образование оксидных слоев: [c.21]    [c.27]    [c.428]    [c.372]    [c.372]    [c.372]    [c.372]    [c.523]    [c.372]    [c.372]    [c.288]   
Производство водорода кислорода хлора и щелочей (1981) -- [ c.19 , c.20 , c.22 , c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Образование металлов

Оксидный



© 2024 chem21.info Реклама на сайте