Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная атмосфера и растворитель

    Электростатическая теория растворов объясняет сравнительно малую электропроводность расплавленных солей огромным тормозящим влиянием ионной атмосферы, которая здесь имеет характер ближнего окружения каждого иона ионами противоположного знака. Растворитель, уменьшающий взаимодействие ионов, отсутствует, а расстояния между нонами очень малы. Вследствие отсутствия сольватации подвижности ионов в расплавах непосредственно связаны с их радиусами, и в ряду щелочных катионов наблюдается правильная последовательность подвижностей  [c.452]


    Предлагается по нескольку растворов различных электролитов (с указанием растворителя и его диэлектрической постоянной О), для которых при заданной температуре Т известны величины концентраций с и средних активностей а . На основании зависимости среднего коэффициента активности от концентрации (/ / . от ]/ с необходимо выбрать тот электролит, в котором межионное взаимодействие определяется силами притяжения. Из остальных электролитов следует выбрать такой, где силы отталкивания начинают проявляться при наиболее низкой концентрации. Для обоих выбранных электролитов рассчитать радиусы ионной атмосферы 1/Х при заданных концентрациях с, и [c.27]

    Снижение эквивалентной электропроводности электролита при увеличении концентрации можно представить себе наглядно. Пусть при движении центрального иона в электрическом поле ионная атмосфера возникает перед ним и исчезает позади него. Появление ионной атмосферы происходит с некоторой задержкой времени (релаксацией). Время релаксации обратно пропорционально концентрации и заряду ионов, а также электропроводности. В результате движения иона равнодействующая всех зарядов ионной атмосферы смещается назад по движению ионов, иначе говоря, ионная атмосфера деформируется, становится асимметричной и поэтому тормозит движение центрального иона из-за электростатического взаимодействия (эффект релаксации). Кроме эффекта релаксации возникает также электрофоретическая сила. Она создается вследствие того, что ионная атмосфера состоит преимущественно из ионов противоположного знака и при движении в направлении, противоположном центральному иону, увлекает за собой молекулы растворителя в результате возникают как бы дополнительные силы трения. Обе эти силы обратно пропорциональны радиусу [c.332]

    Наложение внешнего электрического поля нарушает симметричность ионной атмосферы (рис. 9.3,6), так как центральный ион и ионная атмосфера движутся в противоположных направлениях. Вокруг центрального иона начинает группироваться новая ионная атмосфера, а старая — разрушается. На разрушение старой и образование новой ионной атмосферы требуется время, называемое временем релаксации. Позади движущегося иона оказывается избыток ионов противоположного знака, электростатически тормозящих центральный ион. Такое торможение называется релаксационным (релаксационный эффект). При движении ионная атмосфера увлекает за собой молекулы растворителя, поэтому среда, в которой движется центральный ион, перемещается ему навстречу. Этот вид торможения называется электрофоретическим (электрофоретический эффект). [c.66]


    В результате диссоциации вокруг твердой фазы ионита образуется из его подвижных ионов ионная атмосфера, расположенная в очень ограниченном пространстве растворителя. Активность ионита и его рабочая емкость поглощения зависят от величины ионной атмосферы, возникающей вокруг зерна,— они тем выше, чем мощнее ионная атмосфера. [c.194]

    Влияние растворителя учитывается введением диэлектрической проницаемости Ер. Предполагается, что в растворе электролита вследствие электростатического взаимодействия между ионами (притяжение между разноименными и отталкивания между одноименными) вокруг каждого иона образуется в среднем по времени сгущение ионов противоположного знака. Такие сгущения образуют так называемые ионные атмосферы противоположного данному иону знака и, следовательно, в принципе межионное взаимодействие можно свести к взаимодействию между ионными атмосферами. Ионная атмосфера характеризуется зарядом, величина которого быстро убывает с ростом расстояния от центра. Заряд ионной атмосферы тем больше, чем больше общая концентрация ионов в растворе. При наложении электрического тока катионы и анионы двигаются в соответствующих направлениях вместе со своими атмосферами, которые в своем движении запаздывают за движением ионов и тем самым тормозят его. Кроме того, ионы испытывают тормозящее воздействие за счет притяжения между ионными атмосферами противоположных знаков. Эти тормозящие воздействия уменьшают подвижность ионов и, следовательно, уменьшают эквивалентную электрическую проводимость, что особенно заметно при увеличении концентрации. Указанные явления представляют собой физические причины существования коэффициента электрической проводимости [c.389]

    Катафоретическое трение не зависит от коэффициентов трения ионов, образующих ионную атмосферу, и одинаково для однотипных электролитов, растворенных в одном и том же растворителе при данных температурах и концентрации. [c.406]

    Ионная атмосфера обладает сферической симметрией до тех пор, пока отсутствует внешнее электрическое поле или другая сила, стремящаяся вызвать движение иона относительно растворителя (например, гравитационное поле в ультрацентрифуге). Но как только ион начинает двигаться под действием электрического поля, симметрия ионной атмосферы нарушается. Если бы можно было проследить за движением центрального иона, то можно было бы увидеть, что этот ион в результате своего перемещения оказывается в области, где около него ионная атмосфера еще не успела сформироваться. Зато в том месте, откуда ушел центральный ион, его ионная атмосфера не успела разрушиться полностью. [c.194]

    Наряду с указанными причинами движение иона тормозится еще и вследствие того, что входящие в ионную атмосферу ионы противоположного знака заряда движутся в противоположном направлении и при этом передают часть своей кинетической энергии молекулам растворителя. Центральный ион оказывается в локальном встречном потоке растворителя, т. е. он находится под действием дополнительной тормозящей силы,, эквивалентной увеличению вязкости среды. Этот эффект торможения, имеющий гидродинамическую природу, называется электрофоретическим эффектом. [c.194]

    Основой современных теорий растворов электролитов является теория П. Дебая и Э. Гюккеля (1923 г.). Авторы исходили из того, что электролиты в растворе полностью диссоциированы, растворитель представляет собой непрерывную среду с диэлектрической проницаемостью е, и все отклонения активности от концентрации обусловлены только кулоновскими взаимодействиями между ионами. Они ввели представление об ионной атмосфере. Причем вследствие теплового движения ионов и связанного с ним некоторого размазывания зарядов они рассматривали ионную атмосферу как систему с непрерывно уменьшающейся по мере удаления от центрального иона плотностью заряда. [c.170]

    В отличие от этого при рассмотрении энергии переноса иоиов из одного растворителя в другой нужно учесть не только изменение потенциала иона в связи с изменением ионной атмосферы, но и изменение потенциала самого иона в связи с изменением диэлектрической проницаемости растворителя. [c.77]

    Согласно теории сильных электролитов Дебая — Хюккеля, каждый ион полностью диссоциированного электролита окружен ионами, создающими поле противоположного знака. Такое распределение ионов в пространстве называется ионной атмосферой. При наложении внешнего поля центральный ион и ионная атмосфера, как обладающие зарядами, одинаковыми по величине, но обратными по знаку, движутся в противоположные направления. Силы меж-ионного взаимодействия вызывают торможения, растущие с увеличением концентрации, и, следовательно, уменьшающие эквивалентную электрическую проводимость. Движение ионной атмосферы в сторону, противоположную центральному иону, вызывает электрофоретическое торможение, обусловленное движением сольватированного иона против потока сольватированных ионов ионной атмосферы. Второй эффект торможения обусловлен нарушением симметрии расположения ионной атмосферы вокруг центрального иона при его движении под действием поля. Движение приводит к разрушению ионной атмосферы позади иона и образование ее на новом месте. Для этого требуется время релаксации, и потому позади движущегося иона всегда находится некоторый избыток заряда противоположного знака, тормозящего его движение. Это торможение называют релаксационным. На скорость движения иона в растворе влияет вязкость среды, создавая дополнительный эффект трения, который учитывается уравнением Стокса /т = 6ят]гу, где /т — спла трения т) — вязкость растворителя г — радиус иона V — скорость движения иона. [c.272]


    Возникновение катафоретических сил объясняется тем, что ионная атмосфера под воздействием внешнего поля стремится двигаться в направлении, обратном направлению движения центрального иона, а это ведет к появлению сил трения, вызванных увеличением скорости движения центрального иона относительно прилегающих к нему слоев растворителя, увлекаемых ионной атмосферой. [c.116]

    Это явление легко объяснить с точки зрения теории Дебая. Действительно, скорости, приобретаемые ионами под влиянием больших электрических полей, могут стать столь значительными, что фактическое время взаимодействия ионов станет меньше времени, необходимого для образования ионной атмосферы. В связи с этим ионное облако не сможет образоваться, и ионы начнут двигаться так быстро, как если бы они испытывали только сопротивление, вызванное вязкостью растворителя. [c.120]

    Смещения ионов, возникающие при колебательном двил<ении, вызывают нарушения структуры расплавов. Можно считать долю свободных , не занимающих равновесного положения ионов степенью диссоциации расплавов и оценить ее на основании электропроводности. В расплавах, как и в водных растворах электролитов, каждый ион окружен ионной атмосферой из ионов противоположного знака. Однако растворитель, уменьшающий взаимодействие ионов, здесь отсутствует, а расстояния между ионами очень малы. Поэтому ионная атмосфера в расплавленных солях имеет характер ближнего окружения каждого иона ионами противоположного знака. Сравнительно малая электропроводность расплавленных солей может быть объяснена с точки зрения современной теории электролитов огромным тормозящим влиянием ионной атмосферы. [c.314]

    Зависит ли величина радиуса ионной атмосферы от концентрации ионов, их природы, природы растворителя Оцените величину радиуса ионной атмосферы для 0,001 и 0,01 молярного раствора 1,1-зарядного электролита в воде согласно I приближению теории Дебая—Гюккеля. [c.195]

    Радиус ионной атмосферы 1/и в I приближении теории Дебая—Гюккеля зависит от концентрации, температуры, природы растворителя, заряда ионов, но не от их природы  [c.200]

    Электрофоретический эффект связан с тем, что из-за ионной атмосферы ионам приходится двигаться навстречу потоку других ионов, которые гидратированы в водных растворах. Следовательно, существует как бы встречный поток растворителя, создаю- [c.357]

    Как можно видеть, толщина ионной атмосферы зависит от температуры, диэлектрической проницаемости растворителя, числа ионов и их заряда. Величина х имеет больщое значение в теории растворов электролитов, она непосредственно связана с термодинамическими свойствами ионов. [c.142]

    Это уравнение является исходным в теории Дебая — Хюккеля. Однако при его выводе были сделаны следующие допущения а) к ионам применим статистический закон распределения Больцмана, что позволило сложное взаимодействие многих ионов заменить более простым взаимодействием их ионных атмосфер б) растворение не изменяет диэлектрической постоянной, т. е. диэлектрические постоянные раствора и растворителя равны. Эти допущения ограничивают применимость уравнения (П.21), но не позволяют решить его. Поэтому авторы теории прибегли к двум дополнительным упрощениям  [c.70]

    Эффект Вина состоит в том, что при увеличении напряжения на электродах электропроводность электролитов возрастает, стремясь к величине коо. При сильных полях, порядка 100 000 в см, скорости ионов достигают метра в секунду. В таком случае за время релаксации ион проходит расстояние, во много раз, превышающее толщину ионного облака. При этом скорости, приобретаемые ионами под влиянием больших электрических полей, могут стать столь значительными, что фактическое время взаимодействия ионов станет меньше времени, необходимого для образования ионной атмосферы. В связи с этим ионное облако не сможет образоваться и ионы начнут двигаться так быстро, как если бы они испытывали только сопротивление, вызванное вязкостью растворителя. [c.116]

    В растворах с большой ионной силой подвижность ионов зависит и от характера их взаимодействия с ионной атмосферой и растворителем. Положительные и отрицательные ионы, движущиеся в противоположных направлениях, переносят с собой некоторое количество молекул растворителя. В результате каждый ион дви- [c.152]

    Неидеальность раствора электролита определяется взаимодействием ионов друг с другом и с молекулами растворителя. При достаточно высокой концентрации ионов каждый йз них окружен ионной атмосферой—ионами противоположного знака. [c.29]

    Первый член справа в этом уравнении представляет собой потенциал на расстоянии г от отдельного иона в среде с диэлектрической постоянной В. Второй член равен потенциалу ионной атмосферы. Первый член не входит в выражения для зависимости термодинамических свойств электролитов от концентрации ионов. Однако в некоторых случаях, когда нужно учитывать влияние изменения растворителя, первый член сохраняется. Так как 1—е-") приближается к величине хг при малых значениях хг, то потенциал иона и его атмосферы в этом случае становится равным [c.42]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    Электрофоретический, или катафоретй й, эффект заключается" в том, что под действием электрическ поля иойы, составляющие ионную атмосферу, сами перемещаются в противоположную сторону вместе с сольватирующими их молркулами растворителя, что создает дополнительное торможение передвижению рассматриваемого иона. [c.410]

    По мере разбавления раствора сильного электролита совершается работа против электрических сил ионных атмосфер. При этом происходят дополнительные изменения внутренней энергии за счет теплот растворения, знак и величина которых зависят также от изменений, происходящих в растворителе. Этой добавочной внутренней энергии соответствует добавочное изменение свободной энергии, и появление поправочного множителя к концентрации в виде коэффициента активности, характеризующего уменьшение реакционной способности иона, связанное с наличием ионной атмосферы. Для раствора, содержащего М частиц каждого /-го сорта в некотором заданном объеме (У=соп51) свободная энергия / связана с внутренней уравнением Гиббса—Гельмгольца  [c.390]

    Второй метод расчета активности и коэффициента активности— теоретический, исиользующий представление о том, что каждый ион можно рассматривать как центр, вокруг которого группируются в несколько слоев противоположно заряженные иопы, образуя ионную атмосферу. Исходя из этого представления, вычисляют электрический потенциал иона по отношению к окружающей его ионной атмосфере, которая при удалении от центрального иона непрерывно ослабляется и переходит в со стояние чистого растворителя илн идеального раствора. Затем вычисляют работу переноса центрального иона из ионной атмосферы в идеальный раствор и работу удаления всех ионоп ионной атмосферы. В сумме получают работу удаления все.  [c.291]

    Все сказанное выше о сольватации ионов относится к очень разбавленным растворам. При переходе к растворам средних и высоких концентраций картина взаимодействий значительно усложняется. Здесь на взаимодействие ионов в растворителем накладывается их взаимодействие друг с другом. При небольших концентрациях электролита оно проявляется в образовании около ионов ионных атмосфер из ионов противоположного знака. В более концентрированных растворах образуются ассоциаты из сольватированных ионов — ионные пары, тройники и др. Наконец, в очень концентрированных растворах растворителя не хватает для формирования сольватных оболочек и ионы десольватированы. В связи с этим К. П. Мищенко и А. М. Сухотиным в 1953 г. было введено понятие о границе полной сольватации — той концентрации раствора, когда растворителя еще достаточно для образования первых сольватных сфер. Переход через границу полной сольватации ведет к резкому изменению многих свойств растворов. [c.285]

    Эквивалентная электропроводность изменяется с температурой. Для большинства электролитов с повышением температуры электропроводность увеличивается, что объясняется повышением подвижности ионов. Однако для некоторых электролитов, особенно в неводных средах, возможно и снижение электропроводности. Это связано с уменьшением диэлектрической проницаемости растворителя. Величина эквивалентной электропроводности зависит также от амплитуды и частоты приложенного электрического поля. Особенно заметно это проявляется в растворах сильных электролитов, где на перемещение ионов оказывает влияние окружающая противоионная атмосфера. При высоком напряжении ион движется значительно быстрее, чем образуется ионная атмосфера, и поэтому отсутствуют, катафоретиче-ские и релаксационные эффекты. Электропроводность растворов в этих условиях резко возрастает. Релаксационное торможение снижается, кроме того, при повышенных частотах (эффект Дебая—Фаль-кенгагена). В растворах слабых электролитов электропроводность также растет с увеличением градиента поля, однако природа этого явления связана с изменением равновесия диссоциации. При высоком градиенте потенциала равновесие сдвигается в сторону образования ионов. [c.225]

    Это уравнение является исходным в теории Дебая —Гюкке-ля. Однако при его выводе были сделаны следующие допущения. Считалось, что а) к ионам применим статический закон распределения Больцмана, что позволило сложное взаимодействие многих ионов заменить более простым взаимодействием их ионных атмосфер б) растворение не изменяет диэлектрической постоянной, т. е. диэлектрические постоянные раствора и растворителя равны. [c.104]

    В реальном растворе электролита идет борьба двух сил. Электрические силы стремятся создать такое распределение, при котором каждый ион окружен только ионами противоположного знака. Однако этому противодействует хаотическое тепловое движение ионов, приводящее к беспорядочному распределению. Эти противоположные тенденции приводят к тому, что около каждого иона образуется своеобразная ионная атмосфера, в которой преобладают ионы, противоположно заряженные по отношению к центральному иону. При этом каждый из ионов, составляющих ионную атмосферу, в свою очередь, сам является центром своей ионной атмосферы. Молекулы растворителя находятся в пространстве между ионами атмосферы и не только заполняют это пространство, но и взаимодействуют с ними, образуя сольваты, что отражается как на свойствах ионов, так и на свойствах самих молекул растворителей (рис. 14.4). Очевидно, в случае сильных электролитов ионная атмосфера сгущена с разбавлением ионная атмосфера становится все более диффузной, так как силы теплового характера начинают превалировать над электростатическими силами. Именно поэтому разбавленные растворы электролитов хорошо описываются классической теорией. [c.292]

    Нод действием приложенного к погруженным в раствор электродам электрического напряжения ионы электролита в растворе будут перемещаться, то есть через раствор начинает идти электрический ток. Нри движении в растворе ионы испытьшают тормозящее действие, как со стороны молекул растворителя, так и со стороны расположенньк вблизи ионов -ионной атмосферы. Тормозящее действие молекул растворителя при отсутствии ионной атмосферы может быть уподоблено силам трения, действующим на шарик, перемещающийся в сплошной вязкой среде. Зависимость между скоростью движения г- такого шарика, его размерами и вязкостью среды характеризуется законом Стокса  [c.19]

    Коэффициент активности электролита существенно зависит от концентрации. В разбавленных растворах взаимодействие между ионами представляет собой простое кулоновское притяжение или отталкивание это взаимодействие является значительно более дальнодействую-щим, чем другие межмолекулярные взаимодействия. При бесконечном разбавлении распределение ионов в растворе электролита можно рассматривать как совершенно случайное, поскольку расстояния между ионами становятся слишком большими, чтобы они могли притягиваться друг к другу, и коэффициент активности в этом случае равен единице. Однако при более высоких концентрациях, когда расстояния между ионами уменьшаются, силы кулоновского притяжения и отталкивания начинают играть значительную роль. Вследствие этого взаимодействия концентрация положительных ионов вблизи отрицательного и соответственно концентрация отрицательных ионов вблизи положительного несколько повышаются по сравнению со средней концентрацией е растворе. Притяжение между ионом и окружающей его ионной атмосферой приводит к уменьшению коэффициента активности электролита. Этот эффект заметнее в случае многовалентных ионов и для растворителей с меньшей диэлектрической постоянной, в которых электростатические взаимодействия проявляются сильнее. [c.191]

    Рассмотренные выше электростатические модели взаимодействия ионов являются, несомненно, упрощенными. Каждый ион окружен сольватной оболочкой, характер и размеры которой определяются ионом, его зарядом и радиусом, а также размерами молекул растворителя и такими их характеристиками, как дипольный момент их полярных групп, структура и размеры молекулы. Растворитель, его сольватирующая способность, влияние на взаимодействие ионов не сводятся только к среде с диэлектрической проницаемостью е. Точно так же взаимодействие ионов не ограничивается образованием только ионной атмосферы в растворе возникают ионные пары, тройники и ассоциаты из нескольких ионов. Различаются по своей структуре и ионные пары, которые могут быть разделены сольватной оболочкой или соприкасаться, образуя контактные пары. В целом картина более сложная и разнообразная, чем ее рисует классическая теория взаимодействия сферических зарядов в жидкой среде диэлектрика. Сольватирующая способность растворителя лишь отчасти определяется его диэлектрической проницаемостью. Для апротонных растворителей очень важна способность их гетероатомов быть донорами свободной пары электронов для катионов. Донорная способность растворителя характеризуется его донорным числом DN, которое для растворителя равно энтальпии его взаимодействия с Sb ls в растворе 1,2-дихлорэтана  [c.227]

    Конформация гибкой полиэлектролитной цепи определяется условием минимума для суммы конформационной и электрической свободной энергий. Естественно, что наличие одноименных зарядов в цепи означает их взаимное отталкивание, которое приводит к развертыванию клубка, к увеличению его размеров. Электростатическая свободная энергия клубка вычисляется с учетом ионной атмосферы. Флори построил теорию размеров цепей полиэлектролитов, сходную с предложенной им же теорией объемных эффектов (с. 77). Предполагается, что клубок вместе с иммобилизованным им растворителем в целом электрически нейтрален. Расчет показывает, что электростатические взаимодействия не могут превратить клубок в вытянутую цепь — происходит лишь раздувание клубка. Это согласуется с экспериментальными дап-выми—с зависимостью характеристической вязкости [г ] от м. м. В более строгой статистической теории заряженных макромолекул учитывается, что из-за экранирования противоиоиами заря женные группы макромолекулы, расположенные далеко друг от друга по цепи, взаимодействуют лишь при случайном их сближении в результате флуктуаций. Из этой теории следует, что конформационные свойства заряженных макромолекул занимают [c.84]

    При изучении таких вопросов, как электропроводность и диффузия, могут быть опущены первые два члена уравнения (39), содержащие скорости движения раствора в целом. В случае электропроводности возмущающими силами к и к, являются наложенные внешние поля, а в случае диффузии — градиенты термодинамических потенциалов. При движении иона в электрическом поле он увлекает за собой свою атмосферу, и в результате его подвижность уменьшается. Величину этого эффекта можно найти, вычисляя значения потенциалов по уравнению (39) и затем силы, действующие на ионы. Кроме того, имеется другой. чффект, обусловленный движением растворителя по отношению к иону, называемый электрофоретическим эффектом , который следует вычислять независимо и добавлять к эффекту, связанному с асимметричностью ионных атмосфер. [c.44]


Смотреть страницы где упоминается термин Ионная атмосфера и растворитель: [c.273]    [c.440]    [c.12]    [c.186]    [c.273]    [c.405]    [c.440]    [c.175]    [c.378]    [c.357]    [c.291]   
Введение в электрохимию (1951) -- [ c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Атмосфера, ионы

Иониты Ионная атмосфера

Ионная атмосфера

Растворитель ионита



© 2025 chem21.info Реклама на сайте