Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лучеиспускание, определение

    Под словами черное тело следует понимать тело, которое поглощает все тепловое излучение и не отражает тепловых лучей. Согласно Кирхгофу, черное тело излучает при определенной температуре максимум возможных лучей, т. е. происходит так называемое черное лучеиспускание. В этом случае говорят, что тело обладает способностью поглощения, или степенью черноты, или относительным поглощением е = 1. В практике не встречаются абсолютно черные тела, так как все тела излучают или поглощают меньше энергии, чем абсолютно черное тело при той же температуре. Относительная поглощаемость тел в данном случае меньше единицы. Такого рода тела называются серыми телами. [c.128]


    Это о.значает, что коэффициент лучеиспускания С серого тела при определенной температуре и длине волны пропорционален степени его черноты. [c.129]

    Общее количество энергии в диапазоне длин волн от О до оо, излучаемой при определенной температуре, например 1200° К, поверхностью 1 JИ в течении 1 часа дано площадью, ограниченной кривой Т = 1200 и осью абсцисс. Эта площадь выражается интегралом / Ык ккал/м час. Коэффициент лучеиспускания черного тела равен в данном случае площади, лежащей под кривой Планка, выраженной в тепловых единицах и деленной на четвертую степень соответствующей абсолютной температуры. [c.130]

    Световые лучи имеют длину волны 0,4—0,8 мк тепловые лучи имеют длину волны, равную 0,8—40 мк (1 мк = 10 мм). Таким образом, доля светового лучеиспускания является, например, при 1500° К только небольшой частицей общего лучеиспускания. Поэтому учет энергии видимого. излучения при температурах, которые встречаются в топках промышленных устройств, имеет второстепенное значение. Определяющим в этих случаях является перенос энергии инфракрасными лучами. Это обстоятельство очень важно при определении лучеиспускания несветящегося пламени. [c.130]

    В практических расчетах, когда речь идет о теплоизлучающем или теплопоглощающем теле относительно малой поверхности 1 по сравнению с поверхностью 2, его окружающей, для определения количества переданного лучеиспусканием тепла применяется уравнение [c.139]

    Суш ествуют приборы для определения испаряемости масел путем непосредственного взвешивания. Вообще говоря, этим методам следует доверять больше, чем косвенным, но необходимо прибавить только, что испарение совершается тем легче, чем больше поверхность испарения при прочих равных условиях, а потому полученное-число зависит от глубины слоя, перемешивания искусственного или конвекционного, от скорости нагревания и т. д. Все это заставляет с большим сомнением относиться к оценке масел в отношении испаряемости по способу Гольде. Он предложил, как известно, пользоваться чашечками от прибора Мартенса-Пенского, размеры которых стандартизованы. В чашечки наливается до черты испытуемое масло, а затем они вставляются в соответствующие гнезда в паровой бане, в которой кипит какая-нибудь однородная жидкость, напр., анилин, толуол и т. д. Для лучшей передачи тепла, в гнезда для чашек наливается какая-нибудь высококипящая жидкость. При таких условиях, вследствие потери теплоты через лучеиспускание и т. п., масло не имеет температуры паров жидкости, кипящей Б паровой бане, но во всяком случае эту температуру можно считать постоянной. Опыт продолжается 1—2 часа и больше, после чего> определяется взвешиванием потеря масла. [c.274]


Рис. 11.5. График для определения коэффициента лучеиспускания Рис. 11.5. График для <a href="/info/21656">определения коэффициента</a> лучеиспускания
    Указание. Джоулево тепло следует приравнять теплу, отдаваемому поверхностью проволоки окружающей среде путем конвекции и лучеиспускания. Для определения коэффициента теплоотдачи конвекцией использовать уравнение (VI. 42). [c.179]

    В отличие от твердых тел, которые излучают и поглощают лучистую энергию любых длин волн, газы излучают и поглощают энергию определенных интервалов длин волн. При практических расчетах количество тепла переданное от газов к стенке лучеиспусканием, можно найти по приближенной фор муле [c.460]

    У ниве реальная постоянная Планка и квантовая механика. В 1900 г. немецкий физик Планк, изучая распределение энергии в спектре лучеиспускания абсолютно черного тела, пришел к заключению, что всякое излучение и поглош,ение световой энергии происходит малыми порциями, имеющими определенное значение для каждого вида излучения. Эта порция энергии получила название квант света, квант энергии, или фотон. Планк установил, что энергия кванта ( ) прямо пропорциональна частоте излучения (V), т. е. [c.10]

    Определение условий охлаждения. Если необходимо поддерживать температуру электролита не выше 40° С и охлаждающая вода имеет температуру 15° С, а вытекающая 35° С, то примерное количество воды, поступающей в холодильник ванны (без учета тепловых потерь от лучеиспускания, конвекции и испарения)  [c.574]

    Само существование определенных температур воспламенения тесно связано с энергиями активации соответствующих реакций (IV 2 дои. 6). Вообще говоря, способные к химическому взаимодействию составные части газовой смеси реагируют друг с другом н при более низких температурах, чем то отвечает появлению пламени, т. е. быстро протекающей реакции, сопровождающейся выделением теила и света. Однако взаимодействие ири подобных условиях происходит только между отдельными достаточно активными молекулами и дает поэтому лишь сравнительно небольшое количество тепла, которое быстро рассеивается вследствие теплопроводности, лучеиспускания и т. д. [c.305]

    Уравнение для определения коэффициента теплоотдачи лучеиспусканием от газа к твердой стенке [c.29]

    Тепло, выделяемое электрическим током в проволоке, не все передается теплопроводностью через слой газа. Часть тепла отводится от измерительной проволоки в точках С, А, В, О по проводам, имеющим более низкую температуру. Часть тепла передается от проволоки лучеиспусканием. Одновременно с теплопроводностью тепло может передаваться и конвекцией. Для определения количества тепла, передаваемого теплопроводностью через слой газа, необходимо свести к минимуму все другие виды передачи тепла и оценить их количественно. 34 [c.34]

    Температура газов также не может быть одинаковой но всему объему и при определении коэффициента теплоотдачи лучеиспусканием от дымовых газов к стенкам трубного пучка для практических расчетов принимается как среднеарифметическая величина. [c.28]

    Каждое вещество обладает способностью испускать свой особый, характерный спектр. В том случае, когда вещество в раскаленном состоянии излучает лучи определенной длины волны, лучеиспускание называется избирательным. Всякое тело поглощает те лучи, какие оно способно излучать при той же температуре (из закона Кирхгофа). Если раскаленные газы поглощают часть излучаемого ими спектра, то получаются прерывчатые спектры с темными линиями (или полосами) поглощения. Такие спектры называются обращенными. [c.54]

    Определение температуры поверхности испарения. Когда лучеиспускание и теплопроводность ничтожно малы, температура поверхности испарения приближается к температуре мокрого термометра и легко определяется по относительной влажности газа-теплоносителя и температуре сухого термометра. Часто, однако, из-за лучеиспускания и теплопроводности температура поверхности испарения выше температуры- мокрого термометра. В таких случаях для того, чтобы определить постоянную скорость сушки, необходимо определить истинную температуру поверхности.  [c.504]

    Для определения Гд находится по табл. 2-1 коэффициент бэф, по рис. 2-20—2-22 определяется коэффициент бш по отношению Ijb или Ijd, по табл. 2-2 в зависимости от приведенного коэффициента лучеиспускания находится бс и тогда [c.120]

    Таким образом, эмиссионный спектральный анализ основан на использовании физического свойства вещества, заключающегося в лучеиспускании вследствие возбуждения. В этом и состоит коренное отличие спектрального анализа от химических методов анализа (гравиметрического и титриметрического), основанных, как известно, на непосредственном измерении массы вещества, но не его свойств. Необходимо отметить, что в первый период своего формирования и применения эмиссионный спектральный анализ характеризовался как физический метод, с чем нельзя не согласиться. В настоящее время при определении примесей в веществах высокой частоты для повышения относительной чувствительности определений используют методы химического концентрирования примесей с последующим анализом концентрата прямым спектральным методом. Такой комбинированный способ анализа позволяет повысить чувствительность определения на один-два порядка. Поэтому спектральный анализ следовало бы отнести к физикохимическим методам, так как химические процессы являются косвенным средством многих современных методов спектр тьного анализа. [c.5]


    Газы излучают и поглощают энергию только в определенных относительно узких интервалах длин волн. Энергия лучеиспускания в интервалах длин волн вне этого диапазона равна нулю, а газы в этих интервалах являются теплопрозрачными (диатермичными) [c.141]

    Температура Тя зависит от параметров испаряющейся жидкости (фракционного состава, температуры кипения, давления насыщенных паров) и давлення и температуры окружающей среды, но мало зависит от относительной скорости движения и диаметра капли. Для определения Тя могут быть использованы соответствующие зависимости, предлагаемые в работах [126, 133]. При высвкнх температурах окружающей среды (например, в дизелях и ВРД) можно принимать Тя равной температуре кипения Т,. Прн определении Тя в условиях поршневых ДВС тепло лучеиспускания обычно ие учитывается, его доля составляет менее 1,5% [126]. Следует отметить, что при Гв<Г, испарение близко к изотермическому и лимитируется диффузней паров при Тя>Т, испарение лимитируется теплообменом. В процессе испарения капли ее диаметр постоянно уменьшается, однако, по данным [134], если рт>С< (где С. — концентрация паров у поверхности капли), испарение можно считать квазистационарным и можно рассчитывать его скорость по формулам, приведенным в работе [135] [c.109]

    Радиоактивностью называется снособность атомов неустойчивых и,зотопов некоторых элементов к самопроизвольному лучеиспусканию. Последнее обладает рядом общих свойств, которые служат для его качественного и количественного определения. Важн( й иими свойствами радиоактивного излучения являются а) действие его на фотографическую эмульсию, вызывающее ее почернение б) ионизация газов, т. е. возбуждение в них электро-нрово.цности в) высокий тепловой эффект процесса, отличающий его от обычных химических превращений г) возбуждение свечения некоторых веществ, напрнмер 2п.Я д) значительная проникающая способность и др. [c.61]

    Аппарат Энглера был несколько видоизменен Уббелоде (357), снабдившим его более длинной и узкой трубкой истечения. Этот вариант пригоден для определения вязкости очень подвижных масел. Отличие от аппарата Эш лера состоит в том, что наблюдается скорость истечения только 100 см наполнение сосуда А (фиг. 53) производится автоматически до некоторого уровня, определяемого отводной трубкой d. Для более густых жидкостей, чем керосин, даже для тех, вязкость которых хорошо оиределяется энглеровским прибором, видоизменение Уббелоде дает, вообш е говоря, более точные-цифры. Настояш,ая область применения аппарата—определение вязкости лри температурах выше 50°. Уббелоде предложил еще один вариант вискозиметра, в котором постоянная температура иоследуемого масла поддерживается парами какой-нибудь кипящей однородной жидкости (анилин, нитробензол и т. п.). Рубашка, окружающая сосуд с маслом, закрыта наглухо в крьипке ее имеется отверстие для наливания жидкости и другое для обратного холодильника. Потеря через лучеиспускание происходит только через крышку сосуда с маслом, которая изолируется дурными проводниками тепла. [c.255]

    Определение величины ав связано е трудностями, вызванными сложностью процессов теплообмена это и лучеиспускание газов, и свободная и вынужденная конвекция парогазовой смеси в пузырьке. Расчеты показывают, что количество тепла, переданное излучением, составляет лишь около 5% общего количества тепла, отданного пузырьком. Величину ап можно определить из уравнения И. Г. Аладьева [26]  [c.94]

    Закрытый аппарат Мартенс-Пенского (рис. VIII. 2) служит для определения температуры вспышки тех продуктов, для которых она превышает 50° С. Оп состоит из следующих частей 1) медного или железного (омедненного или никелированного) или, наконец, биметаллического резервуара с фланцем с наружной стороны и с кольцевой меткой на внутренней, до которой наливается испытуемый продукт 2) крышки резервуара (показана на рисунке отдельно), плотно пригнанной к цилиндру, имеющей тубус для термометра I, мешалку на гибкой пружинной ручке 2, зажигательную лампочку 3, которая при повертывании рукоятки 4 с механизмом 5 наклоняется через отверстие в крышке в паровое пространство цилиндра 3) чугунной воздушной бани 6, составляющей одно целое с треножником. Баня окружена металлической рубашкой 7, защищающей ее от потери тепла лучеиспусканием. [c.129]

    Лучеиспускание газов. Излучение газов существенно отличается от излучения твердых тел. Одноатомные газы (Не, Аг и др.), а также многие двухатомные газы (На, Оз, N3 и т. д.) прозрачны для тепловых лучей, т. е. являются диатермичными. Вместе с тем ряд имеющих важное техническое значение многоатомных газов и паров (СОа, ЗОз, ЫИд, И, О и др.) могут поглощать лучистую энергию в определенных интервалах длин волн. В соответствии с законом Кирхгофа эти газы обладают излу-чательной способностью в тех же интервалах длин волн. Кроме того. [c.274]

    Подобным же образом записаны основные уравнения, являющиеся математическим описанием процессов в остальных звеньях объекта. При этом учтено, что для остальных звеньев теплопередача в основном определяется процессом переноса тепла от нитрозного газа к стенке и термическим сопротивлением стенки (коэффициент теплоотдачи от стенки к воде или паро-жидкостной эмульсии на порядок выше) кроме того, переносом тепла лучеиспусканием для экономай-зерной части можно пренебречь ввиду сравнительно низкой температуры нитроз-ного газа. С учетом этих условий и получены уравнения (11.31), (11.34), 01-43) для определения коэффициентов теплопередачи в этих звеньях. Граница между испарительным и экономайзерным звеньями изменяется в зависимости от режима работы котла. При этом могут быть следующие состояния  [c.52]

    Радиоактивностью называется способность атомов неустойчивых изотопов некоторых элементов к самопроизвольному лучеиспусканию. Последнее обладает рядом общих свойств, которые служат для его качественного и количественного определения. Важнейшими свойствами радиоактивного излучения являются а) действие его на фотографическую эмульсию, вызывающее ее почернение б) ионизация газоЁ, т. е. возбуждение в них электропроводности  [c.218]

    Как следует из самого определения радиационного режима работы печей, внешняя теплоотдача в данном случае осуществляется только лучеиспусканием или лучеиспускание имеет ДОг минирующее значение, и поэтому другими видами тецлоотдачи можно без существенной погрешности пренебречь. [c.269]

    На основе изложе1Нного может быть сформулировано обобщенное уравнение энергии с учетом различных видов теплообмена (лучеиспускание, конвекция, теплопроводность), связанных с движением среды, наличием источников и стоков тепла, нестационарности режима и работы объемных сил и сил трения. Задача о лучистом теплообмене, таким образом, является частным случаем этой весьма широкой постаповки вопроса. Определение отдельных функций, входящих в общее уравнение энергии, строго математическим путем пока представляет непреодолимые трудности. В частности, при решении задач по лучистому теплообмену необходимо знать температурное поле и поле коэффициентов поглощения. Первое из них является результатом одновременно протекающих процессов тепловыделения и теплоотдачи, связанных с процессами горения и движения среды, т. е. с явлениями как кинетического, так и диффузионного характера, чаще всего не поддающихся точному математическому описанию. [c.271]

    Эту величину можно вычислить, если будут известньь монохроматическая поглощательная способность и температура Гг. Для нечерного излучения величины могут значительно отличаться друг от друга. Из сравнения уравнений (13-19) и (13-20) видно, что закон Кирхгофа [см. уравнение (13-4)] неверен для полных поглощательной и излучательной способностей поверхности. Только в том случае, когда падающее излучение испускается черным телом и когда его температура равна температуре поглощающей поверхности, уравнение (13-19) становится идентичным уравнениям (13-20) и (13-21). Интегралы в вышеуказанных уравнениях обычно определяются численно или графически. Для получения поглощательной способности падающего излучения черного тела, например, надо каждую ординату кривой 1а рис. 13-5, взятой для данной температуры, умножить на соответствующую поглощательную способность (полученную, например, из рис. 13-9). Площадь, ограниченную получившейся кривой, необходимо затем разделить на площадь, ограниченную соответствующей кривой графика (рис. 13-5). Определенные таким образом В. Зибером значения поглощательной и отражательной способностей различных материалов представлены графически на рис. 13-10. Эти кривые наглядно показывают различие в поведении проводников (представленных алюминием) и непроводников. Поглощательная способность непроводников падает с повышением температуры для проводников картина обратная. Технические излучатели обладают температурой 280—2 780° К. При таком лучеиспускании поглощательная способность непроводников намного превышает поглощательную способность проводников. Солнце обладает температурой 5 500° К. При такой температуре непроводники с белой поверхностью поглощают меньше лучистой энергии, чем металлические поверхности. Лишь немногие металлы, например серебро, обладают [c.459]

    Тепловое лучеиспускание получается путем превращения в накаленных телах части тепловой энергии в световую. Для того чтобы тело светилось, оно доляшо быть нагрето до определенной мхшималь-ной температуры. С повышением температуры тела возрастает и световое излучение. [c.54]

    Они должны гореть в течение определенного промежутка време-1П1, которое гарантировало бр>г воспламенение поджигаемого объекта. Однако ото требование трудно совместить с по.лучением высоких температур горения, ибо прп продоллгительном горешш происходят значительные потери тепла на лучеиспускание и конвекцию, что приводит к понил епию температуры. [c.115]

    В методе лучеиспускания и поглощения температура пламени определяется путем сравнения спектральной яркости пламени со спектральной яркостью стандартного источника излучения в данном интервале длин волн, в котором может содержаться произвольное число полос поглощения. Этот метод впервые примеиеи Курльбаумом [24] в 1902 г. для определения температуры пламени свечи. Джэкобс и Б1ольник [22] использовали этот метод д.и я измерения температуры ракетных пламен и факелов. Некоторые ошибки, присущие методу лучеиспускания и поглощения, указанные в 1902 г. Луммером и Прингсхеймом [25], будут рассмотрены в это.м разделе. [c.398]

    Спектральный коэффициент отражения пламени предполагается пренебрежимо малым по сравнению со спектральным коэффициентом поглощения в (16.5). Если это не так, как, например, для участков спектра, в которых нет хорошо выраженных полос поглощепия, то температура пламени, определенная методом обращения, ниже истинной температуры 125]. Спектральный коэффициент отражения в методе лучеиспускания и поглощения может и не быть пренебрежимо малым. Поэтому необходимо провести дополнительные измерения, чтобы определить величину поправки, которую надо ввести. Хеннинг и Тингвальд [32] показали, что коэффициент отражения бунзеиовского пламени в широкой области спектра пренебрежимо мал. Из (16.5) следует [c.400]

    Льюис и Рендэлл в книге Термодинамика и свободная энергия химических веществ (которая в русском переводе 1936 г. озаглавлена Химическая термодинамика ) раздел, посвященный теплоте и работе (стр.. 37), начинают так Теплота и работа — два понятия, сыгравшие большую роль в развитии термодинамики, нередко вносившие много неопределенности и неясности в эту строго количественную науку. Мы не отказываемся от употребления этих понятий, хотя дать им исчерпывающее определение можно будет лишь в одной из следующих глав. (Это осталось несделанным.— К- П.) Ограничимся пока разъяснениями такого рода если система теряет энергию путем лучеиспускания или теплопроводности, то она отдает теплоту, если же потеря энергии вызвана преодолением системой внешних механических сил, то система производит работу . К этому редактор перевода П. А. Ребиндер, ссылаясь на меня, добавляет Строго говоря, теплоту не следует рассматривать как форму энергии, а скорее как форму передачи энергии, в связи с тем, что теплота и работа не являются, в противоположность энергии, функциями состояния теЛа или системы, а зависят от пути перехода, связывающего начальное состояние с конечным, относясь, таким образом, не к состоянию, а к процессу . [c.44]


Смотреть страницы где упоминается термин Лучеиспускание, определение: [c.274]    [c.442]    [c.192]    [c.24]    [c.47]   
Общая технология синтетических каучуков (1952) -- [ c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Лучеиспускание



© 2025 chem21.info Реклама на сайте