Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкости напряжение внутреннего трени

    Жидкой фазой суопензии обычно является ньютоновская жидкость, которая соответствует закону внутреннего трения Ньютона, причем напряжение внутреннего трения, возникающее между слоями жидкости при ее течении, пропорционально градиенту скорости по нормали к направлению течения. На практике встречаются суспензии, жидкая фаза которых отличается аномальными свойствами и относится к неньютоновским жидкостям. Свойства последних разнообразны и характеризуются названиями пластичных, псевдопластичных, дилатантных, тиксотропных, вязкоупругих жидкостей. [c.55]


    Некоторые процессы химической технологии связаны с перемещением жидкостей, которые, в отличие от обычных вязких жидкостей, не следуют закону Ньютона [уравнение (6-8)]. К числу таких жидкостей, называемых пластичными, или неньютоновскими жидкостями, относятся растворы многих полимеров, коллоидные растворы, густые суспензии и др. Эти жидкости при малых напряжениях внутреннего трення х (в н м ) не текут, а лишь изменяют форму. В условиях, когда х становится больше некоторого значения о > о), начинается течение таких жидкостей. [c.127]

    Для пластичных жидкостей зависимость между напряжением внутреннего трения и градиентом скорости по нормали имеет следующий вид  [c.127]

    Уравнение (П-12), или (П-12а), выражает закон внутреннего трения Ньютона, согласно которому напряжение внутреннего трения, возникающее между слоями жидкости при ее течении, прямо пропорционально градиенту скорости. [c.26]

    Экспериментально установлено, что для многих жидкостей величина касательных напряжений сил трения т в данной точке элемента поверхности, разграничивающего два перемещающихся слоя жидкости, пропорциональна градиенту скорости. В соответствии с этим в случае одномерного течения жидкости (см. рис. 3-1) напряжение внутреннего трения [c.36]

    Уравнение (3.6) выражает закон внутреннего трения Ньютона. Жидкости, в которых напряжения внутреннего трения подчиняются этому закону, называют ньютоновскими. Жидкости, при течении которых напряжения внутреннего трения не описываются уравнением (3.6), называют неньютоновскими. В технике обычно приходится иметь дело с ньютоновскими жидкостями, поэтому в дальнейшем основное внимание будет уделено именно этим жидкостям. [c.37]

    В общем случае, когда поток жидкости не является плоскопараллельным, т.е. когда вектор скорости имеет компоненты w,, и и yv , являющиеся функциями всех трех координат, выражения для напряжения внутреннего трения имеют более сложный вид, отличный от уравнения (3.6). [c.38]

    Несмотря на то что система уравнений (3.8) более точно описывает напряжения внутреннего трения, для анализа влияния сил трения при течении жидкостей в процессах химической технологии чаще используют более простое уравнение (3.6). Объяснить это можно тем, что наиболее важные случаи течения (например, различные варианты движения жидкости в тонком слое, граничном с поверхностью твердых стенок) близки к плоскопараллельному течению и поэтому с достаточной точностью описываются уравнением (3.6). [c.38]


    Рассмотрим движение ламинарного потока неньютоновской жидкости, для которой напряжение внутреннего трения выражается следующим образом  [c.48]

    Напряжение внутреннего трения между двумя слоями прямолинейно движущегося газа или жидкости, согласно закону Ньютона, пропорционально отнесенному к единице длины изменению скорости по нормали к направлению движения  [c.10]

    Будем рассматривать течение жидкости при постоянной температуре (изотермический поток). При постоянной температуре вязкость жидкости также будет постоянной. Напряжение внутреннего трения X в формуле (8) будет зависеть только от градиента скорости Аы. [c.44]

    Напряжение внутреннего трения Тсд, возникающее между слоями жидкости при ее течении, прямо пропорционально градиенту скорости по нормали. [c.22]

    Движение жидкости по трубе параллельными концентрическими слоями может характеризоваться следующим. Если некоторый слой имеет скорость т, то соседний с ним слой имеет w- Aw. Опыт показывает, что скорость слоев жидкости уменьшается от оси к стенкам трубы, причем возле стенок частицы жидкости как бы прилипают к стенкам, т. е. скорость жидкости становится равной нулю (рис. 16). Для перемещения одного слоя относительно другого необходимо приложить некоторую силу, пропорциональную поверхности соприкосновения слоев. Сила Т, отнесенная к единице поверхности Р, называется напряжением внутреннего трения (т)  [c.65]

    По аналогии с этим выражением в случае движения вязкой жидкости вдоль твердых стенок напряжение внутреннего трения можно выразить величиной  [c.12]

    В движущихся жидкостях сила внутреннего трения, отнесенная к единице поверхности, выражает напряжение внутреннего трения (касательные напряжения). Касательные напряжения в потоке суспензии возрастают с увеличением вязкости дисперсионной среды, повышением концентрации твердой фазы (пигмента), увеличением скорости движения и сужением канала. За счет этих факторов касательные напряжения могут достичь величины, достаточной для разрушения агрегатов пигментов. [c.536]

    Возникающая внутри жидкости сила сопротивления равна приложенной силе Т и направлена в противоположную сторону. Отношение этой силы к поверхности соприкосновения слоев обозначают через т и называют напряжением внутреннего трения, а также напряжением сдвига, или касательным напр яжением. Соответственно уравнение (II, 11) принимает вид [c.27]

    В идеальной жидкости силы внутреннего трения отсутствуют и поверхностная сила — это сила давления, не зависящая от ориентации элементарной площадки, на которую она действует. В данной точке поверхности выделенного объема она характеризуется вектором напряжения а = где Hq — единичный вектор внешней нормали к элементарной площадке поверхности. [c.131]

    Вязкость. Вязкостью называется свойство жидкости оказывать соиротивление ее движению. Если представить себе два слоя жидкости площадью Р, отстоящие один от другого на расстоянии А и движущиеся со скоростями ш и ш+Аш, т. е. слои движутся один относительно другого со скоростью Аш (рис. 1-1), то для перемещения одного слоя относительно другого необходимо приложить силу Т. Эта сила, отнесенная к единице поверхности слоя, называется напряжением внутреннего трения  [c.22]

    Псевдоожиженную плотную фазу можно рассматривать как невязкую капельную жидкость, постулируя, что для каждой частицы, сила трения газового потока в любой момент времени уравновешивается силами тяжести и инерции (таким образом, из рассмотрения исключаются соприкосновение частиц и касательные напряжения ). Если по каким-либо причинам псевдоожижение нарушается, плотную фазу в аспекте ее текучести следует рассматривать как механическую систему отдельных твердых частиц. Свойства этой системы следует выражать в зависимости от таких характеристик текучести, как когезионный фактор, угол внутреннего трения и срезающие усилия. [c.567]

    Wg — массовый расход газа Ws — массовый расход твердого материала X — расстояние (вдоль оси) от выхода из насадка (против движения струн) X — характеристическая длина насадка 6 — средняя порозность 8mf — порозность при скорости начала псевдоожижения 8ть — порозность при скорости, соответствующей возникновению пузырей Рр — объемная плотность зернистого материала Pg — плотность твердых частиц Pf — плотность ожижающего агента Pi — плотность жидкости а — нормальное напряжение Ос — предельное напряжение сдвига т — касательное напряжение Ф — угол внутреннего трения [c.589]

    Не следует думать, что энергия, требуемая для проведения этих процессов, расходуется только на развитие межфазной поверхности. В реальных условиях большая доля энергии затрачивается на преодоление внутреннего трения и приведение жидкости в движение. Для совершения элементарных актов диспергирования жидкостей необходимо реализовать в микрообъемах такую гидродинамическую обстановку, в результате которой возникали бы необходимые растягивающие и сдвигающие напряжения, приводящие к образованию и отрыву капель. Поэтому, если иметь в виду как цель получение дисперсии с узким распределением частиц заданного размера, акустические и электрические методы представляются предпочтительными. [c.121]


    При изучении физики твердого тела принимается, что под напряжением оно может течь, но во много раз медленнее, чем жидкость. Поэтому вводится понятие о пластичности или текучести — величине, обратно пропорциональной коэффициенту внутреннего трения т]. Пластичность и хрупкость твердых тел характеризуют их способность к течению, но выраженную в различных количественных характеристиках. [c.164]

    Подобно вязким жидкостям сыпучий зернистый материал обнаруживает внутреннее трение. Касательное напряжение а для этого материала пропорционально нормальному давлению р  [c.102]

    При приложении внешних сил к жидкости деформация развивается неограниченно. Скорость деформации при этом ограничивается только силами внутреннего трения и прямо пропорциональна приложенному напряжению. Так деформируются ньютоновские жидкости. [c.162]

    Вязкость (внутреннее трение жидкости) обусловлена взаимодействием молекул жидкости и проявляется при ее течении. Течение жидкости в капилляре диаметром X характеризуется градиентом скорости о/йл вследствие того, что молекулярный слой, непосредственно примыкающий к стенке капилляра, остается неподвижным, а слой, находящийся в центре капилляра, движется с максимальной скоростью. Ламинарное течение жидкости описывается законом Ньютона, согласно которому напряжение сдвига т, вызывающее течение жидкости, пропорционально градиенту скорости течения  [c.98]

    Для полимеров в вязкотекучем состоянии наиболее важной характеристикой является их поведение при сдвиге. Связь между скоростью вязкого течения у и напряжением т простого сдвига определяется законом Ньютона т = Т1у, где т] — коэффициент пропорциональности, называемый вязкостью. Вязкость характеризует сопротивление полимера сдвигу или его внутреннее трение. При постоянной температуре вязкость (т. е. отношение напряжения к скорости сдвига) может не зависеть от режима деформирования. Среды, удовлетворяющие этому условию, называются ньютоновскими. К ним относится большинство низкомолекулярных жидкостей. Непрерывная перестройка структуры таких жидкостей под [c.153]

    Рис. 1-то. распределение скоростей и напряжений внутреннего трения в сечении ламинарных потоков не-ньютоновскнх жидкостей а — профиль скоростей I — ньютоновская жидкость 2 — псевдо-пластическая 3 — дилатантная 6 — распределение иапряженяй внутреннего трення в — профиль скоростей в сечении потока бин-гамовской жидкости. [c.50]

    В некоторых случаях для упроп1,ения решений задач гидродинамики вводится понятие идеальной (невязкой) жидкости. Под идеальной жидкостью в отличие от реальной подразумевают такую условную жидкость, при движении которой не возникает напряжений внутреннего трения. Идеальная жидкость перемещается по трубам и каналам без сопротивлений (без потери энергии на трение). [c.5]

    Известно относительно мало приложений расчетов нагрева за счет вязкой диссипации в кольцевом течении Куэтта. Одно интересное приложение эти расчеты находят в ротационном вискозиметре, где нагрев аа счет внутреннего трения иногда ограничивает самые большие скорости сдци1 а, которые могут быть использованы в приборе. Полностью развитые поля температур и скорости привлекают мрюго внимания из-за существования неоднозначного решения, найденного в [2П- Касательные напряжения не должны превышать определенного значения, даже если при этом неограниченно увеличиваются скорости сдвига. При высоких скоростях сдвига уменьшение температурной зависимости вязкости компенсируется увеличением напряжения вследствие роста скорости сдвига. Зависимость скорости сдвига Уо1Н (относительная скорость между поверхностями, разделяемыми зазором) от касательного напряжения показана на рис. 8 для жидкости, описываемый степенной зависимостью [20]. Для данного касательного напряжения имеются два режима для проведения эксперимента один при высоких и второй при низких скоростях сдвига. [c.335]

    Вязкость характеризует свойство жидкости оказывать сопротивление сдвигу при перемещении частей жидкости относительно друг друга. Для чистых нефтей и нефтепродуктов справедливо уравнение Ньютона т = г) <1у / ё/, где т - напряжение сдвига, т] - динамическая вязкость (коэффициент внутреннего трения), dv/d/ - градиент скорости между слоями жидкости на единицу длины. Единицей динамической вязкости является паскаль-секунда (Па с). Отношение динамической вязкости к плотности называется кинематической вязкостью и измеряется в единицах - м /с. Применяется и внесистемная единица мм /с, идентичная одному сантистоксу (сСм) - единица, которая используется до сих пор. Для измерения вязкости жидкостей в потоке, в основном, используются вибрационные вискозиметры и вискозиметры с падающим шариком [9]. Из отечественных вискозимет- [c.56]

    Принцип действия прибора Реотест основан на измерении сопротивления, которое оказывает испытуемый продукт вращающемуся внутреннему цилиндру. Эго сопротивление зависит только от внутреннего трения жидкости и прямо пропорционально абсолютной вязкости. По мере того как скорость сдвига увеличивается, вязкость уменьшается. Когда вся структура полностью разрушена, вязкость становится постоянной. Ее называют динамической. Методика позюляет определять как вязкость полностью разрушенной структуры мазута ц, так и начальное напряжение Тц, являющееся мерой прочности структуры мазута, значение которого необходимо знать при расчете трубопроводов. На рис. 1.15 представлена типичная зависимость динамической вязкости мазута Т1 и напряжения сдвига х от скорости сдвига г Продолжение прямолинейного участка реологической кривой до пересечения с осью позволяет получить начальное усилие сдвига Пользуясь такими вискозиметрами, можно рассчитать перепад давлений и объемную скорость потока для ламинарного и турбулентного режимов. [c.105]

    При стекании пленки жидкости по внутренней поверхности вертикальной трубы, по которой противотоком к жидкости, т. е. снизу вверх, движется поток газа (пара), скорость пленки и ее толщина не зависят от скорости газа до тех пор, пока эта скорость достаточно мала. В данном случае касательное напряжение в пленке максимально у твердой стенки и уменьшается до нуля на свободной поверхности. Однако с возрастанием скорости газа сила его трения о поверхность жидкости увеличивается. Как в газе, так и в жидкости у поверхности их раздела возникают равные, но противоположные по направлению касательные напряжения. При этом движение жидкой пленки начинает тормозиться, причем ее толщина увеличивается, средняя скорость снижается, а гидравлическое сопротивление аппарата газовому потоку возрастает. При определенной скорости газа ( 5—10 м1сек) достигается равновесие между силой тяжести, под действием которой движется пленка, и силой трения у поверхности пленки, тормозящей ее движение. Это приводит к захлебыванию аппарата наступление захлебывания сопровождается накоплением жидкости в аппарате, началом ее выброса и резким возрастанием гидравлического сопротивления. Противоточное движение взаимодействующих фаз при скоростях выше точки захлебывания невозможно. Поэтому точка захлебывания соответствует верхнему пределу скорости для противо-точных процессов в аппаратах любых типов. [c.116]

    Первая трудность — это телловыдсление в потоке жидкости з результате внутреннего трения, нарушающее изотермичность потока. Дейстпительно, работа сил вязкого трения, совершаемая в единице объема жидкости, равна произведению величины деформации сдвига на напряжение сдвига, .е. а у. Интенсивность тепло-БЬ1делений определяется мошностью трения (величиной работы сил трепия в единицу времени) она равна ус т- На основании уравнения (1) для величины мощности внутреннего трения получается выражение [c.251]

    Уравнение теплового потока, выведенное в предыдущем параграфе, дает возможность рассчитать теплообмен при вынужденной конвекции для различных случаев, если сделать соответствующие допущения относительно формы кривой распределения температуры. Прежде чем заняться таким расчетом, необходимо вывести дифференциальное уравнение, описывающее энергетические зависимости в движущейся среде. Это уравнение выводится из баланса энергии в стационарном элементе объема, расположенном в иоле потока. Тепло в элемент объема может быть передано теплопроводностью или перенесено движущейся жидкостью через границы элемента. Кроме того, тепло может быть выделено внутренними источниками. Такие источники тепла всегда присутствуют в движущемся потоке вязкой жидкости, поскольку напряжения сдвига вызывают внутреннее трение и превращают кинетическую энергию в тепло. При небольших скоростях изменения температуры, вызванные внутренним трением, малы и ими обычно можно пренебречь. При больших скоростях потока вопросы влияния трения важны. В деле развития высокоскоро-стнрй авиации оци привлекают к себе большое внимание [c.215]


Смотреть страницы где упоминается термин Жидкости напряжение внутреннего трени: [c.29]    [c.18]    [c.169]    [c.90]    [c.297]    [c.126]   
Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.125 , c.127 ]

Процессы и аппараты химической технологии Издание 5 (0) -- [ c.125 , c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Напряжение для жидкостей

Напряжение трения

Напряжения внутренние

Трение внутреннее



© 2025 chem21.info Реклама на сайте