Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стекла мышьяк теллур иод

    Наряду с кислородными стеклами большой интерес представляют халькогенидные германиевые стекла, содержащие серу, селен, теллур и мышьяк. Они прозрачны для инфракрасных лучей, прочны, у них высокий коэффициент преломления 54]. [c.174]

    Желтый цвет придают сульфид железа, образующийся при введении восстановителей, напр, угля (0,5— 1%), или соединения церия и титана (5—7%). Синие, сине-зеленые и зеленые стекла получают, добавляя окислы кобальта (0,08—0,1%), меди (1,3-3,5%) и хрома (0,05-0,5%). В зависимости от типа и назначения контролируется пропускание, отражение и рассеивающая способность стекол. В линзах контролируют силу света и углы рассеяния. В цветных С. с., кроме того, определяют цветовой тон и чистоту цвета. К С. с. относятся и стекла, поглощающие или пропускающие ультрафиолетовые, инфракрасные и рентгеновские лучи, а также стекла, поглощающие излучения высоких энергий (альфа-частицы, тепловые нейтроны). Поглощения излучений в различных участках электромагн. спектра добиваются введением в состав стекла окислов железа, свинца, бария, кадмия, титана, ванадия, церия. Наиболее полно пропускают ультрафиолетовые лучи фосфатные и кварцевые стекла, не содержащие окислов железа. Черные стекла для люминесцентного анализа, пропускающие ультрафиолетовые и задерживающие видимые лучи, получают окрашиванием стекла окислами никеля и кобальта. Основу стекол с границей пропускания в инфракрасной области спектра составляют окислы германия, алюминия и теллура, а также халькогениды мышьяка, селена и [c.351]


    Потребляется теллур главным образом в производстве свинцовых кабелей добавка теллура (до 0,1%) к свинцу резко повышает его твердость и эластичность. Кроме того, теллур находит применение при изготовлении полупроводников и при вулканизации каучука. Соединения теллура используются для окраски стекла, в фотографии и микробиологии (для окрашивания микробов). Соединения селена применяют в тонирующих фотографирующих составах, а органические соединения селена в последнее время пытались использовать для борьбы с раком. Следует отметить, что все соединения селена, подобно соединениям мышьяка, сильно ядовиты. [c.336]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Важнейшей реакцией низших алифатических радикалов является их способность реагировать со многими металлами, нанесенными на поверхность стекла или кварца в виде зеркал. Так, например, при взаимодействии со свободным метильным радикалом цинк превращается в гп(СНз)2, сурьма—в 5Ь(СНз)з и (СНз)2=8Ь — — 8Ь = (СНз)2 и т. д., так же ведут себя ртуть, теллур, натрий, калий, мышьяк, селен и многие другие элементы. Некоторые из этих реакций использованы для выделения низших алкильных радикалов и их идентификации. [c.38]

    Прибор из тугоплавкого стекла или кварца для сжигания серы в токе кислорода и улавливания окислов мышьяка и теллура. Кислород подают через трубку с хорошо пришлифованной пробкой. Окислы мышьяка и теллура улавливают фильтром из стекловолокна, полученного из стеклоткани и предварительно обработанного последовательно [c.426]

    Одним из наиболее важных свойств фтористых соединений является исключительно высокая летучесть многих неионных фторидов. Наиболее летучими являются те, в которых атом металла окружен большим количеством атомов фтора, например четырехфтористая сера менее летуча, чем щестифтористая, пятифтористый мышьяк более летуч, чем трехфтористый, а восьмифтористый осмий имеет большую летучесть, чем шестифтористый. Известно, что фтор и многие его соединения имеют настолько высокую химическую активность, что работать с ними в обычной аппаратуре невозможно они вступают в химическое взаимодействие со стеклом, кварцем, а некоторые из высших фторидов элементов переходных групп разъедают даже платину. Из летучих неорганических фторидов представляют опасность при работе фториды азота, кислорода, серы, селена и теллура, фосфора, мышьяка, сурьмы, кремния, германия и др. Например, дифторид кислорода взрывает с парами воды, хлором, бромом. С точки зрения техники безопасности заслуживают особого внимания соединения фтора с галогенами (табл. 10). [c.61]

    Элементарными называются стекла, состоящие из атомов одного элемента [1]. В стеклоподобном состоянии можно получить серу, селен, мышьяк, фосфор. Имеются сведения о возможности остеклования теллура и кислорода, однако, в настоящее время эти данные оспариваются [2]. [c.40]

    Разложение по Кариусу проводят главным образом при определении галогенов (за исключением фтора, реагирующего со стеклом) и серы. Метод используют (без потерь вещества) при определении ртути, мышьяка, селена, бора, теллура и фосфора в органических соединениях. Метод Кариуса применим при анализе летучих металлоорганических соединений, например метил-олова. Несколько особый случай представляет окисление элементного бора, его карбида и нитрида азотной кислотой в присутствии бромида калия [5.994]. При вскрытии трубки галогены могут улетучиваться в виде галогеноводородов или свободных элементов вместе с выходящими газами. Потери галогенов можно избежать, если в трубку перед запаиванием добавить некоторое количество нитрата серебра. При этом галогениды осаждаются в виде солей серебра. В другом способе вещество помещают в трубку в маленькой серебряной лодочке, которая растворяется при окислении [5.995]. При определении иода в органических веществах вместо нитрата серебра вводят нитрат ртути [5.996]. Следует иметь в виду, что титрованию хлорид- и бромид-ионов раствором нитрата серебра мешают ионы ртути. [c.201]

    Стекла системы мышьяк—германий—теллур значительно более устойчивы по отнощению к растворам щелочи, чем стекла [c.218]

    Необычайное разнообразие типов стекол, обусловленное сочетанием разных стеклообразующих компонентов, а отсюда — чрезвычайно широкий диапазон свойств этих систем, является одной из основных причин трудности понимания структуры стекла (в широком смысле этого слова) и объяснения поведения и различных свойств разнообразных стекол. Действительно, стеклами являются и плавленый кварц, и различные оксидные (содержащие окислы) соединения — силикатные, фосфатные, боратные, свинцовые и т. д., и системы, не содержащие кислорода, на основе соединений мышьяка, сурьмы с серой, селеном, теллуром (халькогенидные стекла), а также различные высокополимеры и полимолекулярные структуры на основе органических соединений. Стеклообразные системы могут быть одно-, двух- и многокомпонентными. [c.5]

    Вторым фактором, затрудняющим стеклообразование в халькогенидных системах, является металлизация химических связей, увеличивающаяся сверху вниз в группах периодической системы. Металлизация проявляется, в частности, в делокализа-ции связей, строго направленных в случае ковалентных связей. Делокализация связей в пространстве сопровождается размыванием волновых функций, вследствие чего облегчается перераспределение компонентов стекла в критической области температур и увеличивается способность расплавов к кристаллизации. Так, в бинарных системах мышьяк—сера и мышьяк—селен, для которых получены большие области, стеклообразования, степень металлизации химических связей невелика. Резкое изменение характера связи наблюдается при переходе к теллу-ридам мышьяка. Вследствие нарастающей делокализации связей способность теллуридов мышьяка к стеклообразованию резко снижается. В системе мышьяк—теллур лишь в режиме жесткой закалки в стеклообразном состоянии получены сплавы двух составов — АзТе и ЛзТео.з и при самой жесткой закалке — АзгТез [18]. При замещении мышьяка на Сурьму и висмут в стеклообразном сплаве Аз Зез, применяя жесткую закалку расплавов, можно получить стекло состава АзЗЬЗез. Замена более 50 ат. % мышьяка на сурьму сопровождается кристаллизацией стекла. На висмут в стеклообразном сплаве АзгЗез мышьяк можно заместить лишь на 5 ат. % [19]. [c.12]


    Известны два основных класса неорганических стекол оксидные и бескислородные на основе соединений мышьяка, теллура, селена и других элементов Свойства бездефектного стекла зависят главным образом от химического состава. Так, модуль упругости кварцевого стекла равен (100 120)10 МПа, алюмоборсиликат- [c.19]

    Высокочастотные безэлектродные лампы. При определении таких элементов, как мышьяк, висмут, сурьма, селен, теллур, таллий, свинец, хорошие результаты были получены при использовании безэлектродных ламп с высокочастотным (ВЧ) возбуждением. Спектральные высокочастотные безэлектродные лампы представляют собой сферические (рис. 8.6, а, б) или цилиндрические (рис. 8.6, в, г) баллоны из стекла или кварца, нанолненные инертным -азом при низком давлении. В баллон, снабженный отростком, помещается небольшое количество чистого металла либо его соли. Имея более низкую температуру, чем остальной баллон, отросток стабилизирует раснределение температуры в ламие и устраняет перемещение металла по внутренней ее но-верхности, уменьшая релаксационные колебания интенсивности излучения. Копструкцин, изображенные на рис. 8.6, а, б, предназначены для применения в ВЧ-генераторах (20—200 МГц), а конструкции, представленные на рис. 8.6, в, г, — в СВЧ-геиераторах [c.146]

    Ампулы из кварцевого стекла печь с силитовым или нихромовым нагревателем и терморегулятором устан.овка для откачки и отпаивания ампул ХА-термопары и потенциометр ПП-63 металлический индий, сурьма, висмут, теллур, германий, мышьяк. [c.63]

    Известны два больших класса стекол с высокой электропроводностью (полупроводниковые). К первому классу относятся бескислородные халькогенидные стекла, состоящие из сульфидов, селенидов и теллури-дов фосфора, мышьяка, сурьмы и таллия. Второй класс составляют кислородные стекла, содержащие большие количества оксидов ванадия, вольфрама, марганца, кобальта, железа, титана. Наилучшими технологическими свойствами (хорошей химической стойкостью, высокой температурой размягчения) обладают силикатные стекла с оксидами железа и титана. [c.348]

    Реакция восстановления хлористым оловом достаточно селективна для мышьяка мешают селен, теллур и благородные металлы, которые тоже восстанавливаются до элементарного состояния. Платиновой петелькой отмеривают приблизительно 1 А. испытуемого раствора мышьяковокислого натрия (10 мг Аз в 1 мл) затем раствор набирают в капиллярную пипетку с внутренним диаметром в широкой части около 0,5 мм. На предметное стекло наносят большие капли раствора хлористого олова и 13 М раствора соляной кислоты. Кончик капилляра с раствором мышья-ковокислой соли сначала погружают в раствор хлористого олова, а затем в раствор соляной кислоты. В пипетку дают войти около [c.97]

    Такое закономерное изменение электропроводности, энергии активации проводимости и микротвердости при замене компонентов в стекле аналогами, нижестоящими в периодической системе элементов, по-видимому, обусловлено в основном нарастанием металлизации химических связей, увеличением делокали- зации электронов в парноэлектронных ковалентных связях по рядам Р->-А5->5Ь-)-В1 и 8- 5е->Те. По данным измерения электропроводности, наиболее резкое изменение характера химических связей происходит в V группе при переходе от фосфора к мышьяку, в VI группе — при переходе от селена к теллуру. В соответствии с изменением характера химической связи в стеклообразных полупроводниках происходит закономерное изменение и других физико-химических свойств (способности к стеклообразованию, химической стойкости и др.) [120]. Ниже [c.71]

    В табл. 88 приведены кинетические данные растворения стеклообразных сплавов системы мышьяк—германий—теллур. При растворении стекол системы As—Ge—Те получены очень высокие значения энергии активации растворения (24— 37 ккал моль), а также завышенные значения предэкспоненциального множителя Сэ. Завышенные относительно Ст (—10 — 102 Q е./см -сек) значения Сэ свидетельствуют о нарушении молекулярно-дисперсного характера растворения. Стеклообразные сплавы системы As—Ge—Те, как и бинарные стекла AsTe и AsTeo,8, обладают повышенной химической стойкостью по отношению к растворам щелочей. Концентрированные растворы щелочи разрушают стекло. Возможно, что такое нарушение мо-лекулярно-дисперсного характера растворения связано с некоторой микронеоднородностью структуры стекла, связанной с ассоциацией структурных единиц в предкристаллизационный период (известна повышенная кристаллизационная способность стекол, содержащих теллур, по сравнению с селеновыми). Такая ассоциация структурных единиц не только не разрыхляет структуру стекла, а, наоборот, значительно упрочняет ее. Об упрочнении структуры стекол системы мышьяк—германий— [c.219]


Смотреть страницы где упоминается термин Стекла мышьяк теллур иод: [c.213]    [c.76]    [c.119]    [c.227]    [c.227]    [c.154]    [c.396]    [c.34]    [c.129]   
Неорганические стеклообразующие системы (1970) -- [ c.281 , c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Теллур

Теллуриты



© 2025 chem21.info Реклама на сайте