Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура теплообменного аппарата

    При расчете теплообменного аппарата весьма важным является точное определение средней разности температур между теплоносителями (температурного напора) Д ср. [c.15]

    Тепловой расчет кожухотрубчатых холодильников не отличается от расчета теплообменных аппаратов и сводится к определению коэффициента теплопередачи и с]юдней разности температур. [c.158]

    Выбор давлений и температур в колоннах также обусловливается требованиями к качеству и состоянию целевых продуктов, составом исходного сырья, располагаемыми хладо- и теплоносителями и т, п. За исходный параметр часто принимают температуру конденсации паров в верхней части колонны при атмосферном давлении. Если температура конденсации паров при атмосферном давлении слишком низка, давление повышают. Например, пропан при атмосферном давлении конденсируется при —42 °С, при повышении же давления до 1,9 МПа его температура конденсации становится равной +55 °С. Снижение давления в колонне ниже атмосферного (вакуум) диктуется [ге-обходимостью уменьшения температуры кипения нижнего продукта либо из-за технических трудностей достижения требуемого уровня температуры, либо из-за разложения продукта. Выбор температур определяется также рациональной разницей температур охлаждающей среды и паров в верхней части колонны, теплоносителя и остатка — в нижней части колонны, ибо от этого во многом зависит поверхность теплообменных аппаратов. [c.106]


    Теплообменные аппараты наиболее подвержены загрязнению и коррозии, в связи с чем их периодически приходится очищать от накипи, отложений солей, грязи, продуктов коксования и микроорганизмов. Количество отложений и их состав зависят от свойств продуктов и температур процесса теплообмена. Способы очистки трубок и трубных пучков выбирают с учетом состава отложений и их количества. Применяют механические, гидравлические, химические, ультразвуковые, гидропневматические и пескоструйные способы очистки теплообменной аппаратуры. Наиболее безопасные условия труда обеспечиваются ультразвуковыми, химическими и гидропневматическими способами очистки. [c.223]

    Новые конструкции тарелок, допускающие высокие скорости потоков при малом расстоянии между тарелками (200 мм), и новые конструкции теплообменных аппаратов, работающие с минимальной разностью температур (5°С), позволяют все более широко применять технологические схемы одноколонных агрегатов с тепловым насосом. В нефтепереработке одноколонные системы ректификации с тепловым насосом в настоящее время применяют в основном на этиленовых установках при разделении смесей этилен— этан и пропилен — пропан. [c.114]

    Для снижения температурных усилий и напряжений на корпусе теплообменных аппаратов жесткого типа устанавливают компенсаторы. Жесткость конструкции таких аппаратов значительно уменьшается и решетки могут более свободно перемещаться при возникновении разности температур труб и корпуса. [c.155]

    Стоимость теплообменной аппаратуры принимается пропорциональной массе теплообменного аппарата при заданных коэффициенте теплопередачи и температуре хладоагента  [c.103]

    Витые прокладки (рис. 50) изготовляют двух профилей У-образные толщиной 4,4 мм и У-образные толщиной 3,2 мм и двух видов — состоящие из чередующихся витков прокатанной металлической полосы и вставкой ленты и получаемые обмоткой двух металлических катаных полос и одной вставкой ленты. Материал металлических полос — аустенитная нержавеющая сталь, железо Армко, монель-металл вставной ленты —600° С. асбестовая бумага, спрессованный асбест и сжатый синтетический каучук. Прокладки применяют при температуре до 600° С. Для теплообменных аппаратов 0 325—1400 мм на условное давление Ру = 10н-64 кгс/см и температуру от —30° до —450° С изготовляют два типа прокладок для фланцев распределительной [c.99]

    Отложения в теплообменных аппаратах могут быть двух видов твердые — окалина, накипь, продукты коррозии металла, кокс и др. пористые — рыхлый кокс, тина, грязь, коксовая пыль, сажа и др. Эти отложения снижают коэффициент теплопередачи и, как следствие, температуру нагрева сырья на выходе из теплообменника. Чтобы поддержать коэффициент теплопередачи на должном уровне, загрязненный пучок теплообменных труб периодически очищают от отложений. Обычно для однотипных теплообменников используют запасной пучок теплообменных труб, заменяя им загрязненный. [c.271]


    Гибкий элемент — основная деталь компенсатора — получает в рабочих условиях наибольшие по сравнению с другими деталями деформации и соответствующие им напряжения. Материал гибких элементов выбирают особенно тщательно в зависимости от температуры среды, транспортируемой по трубопроводу или теплообменному аппарату, и характера воздействия среды на металл волн, находящихся в напряженном состоянии при эксплуатации компенсатора. Кроме того, механические свойства материала гибкого элемента (пластичность в холодном или горячем состоянии, предел текучести и т. п.) должны обеспечивать возможность гофрирования при принятом технологическом процессе без ухудшения его исходных показателей. [c.109]

    В кожухотрубчатых теплообменных аппаратах с плавающей головкой или, как их иначе называют, с подвижной решеткой (рис. 138) трубчатый пучок со стороны плавающей головки не связан с корпусом и свободно меняет длину при изменении температуры труб. Это устраняет температурные напряжения в кон- [c.169]

    Повышенную опасность представляют собой теплообменные аппараты, в которых при высоких температурах, давлениях или вакууме охлаждаются или нагреваются парогазовые и жидкие смеси со взрывоопасными свойствами. Для большинства теплообменных -аппаратов наибольшую опасность при их эксплуатации представляют нарушения герметичности, резкие изменения температур и давления, перегрев парогазовой смеси, ослабление механической прочности труб и корпусов аппаратов, вызванное различными отложениями на внутренней поверхности труб, змеевиков, корпуса теплообменника, а также коррозией, эрозией и др. [c.132]

    Для предупреждения подобных аварий при выпаривании легковоспламеняющихся компонентов из взрывоопасных продуктов следует строго регламентировать состав исходной смеси, поступающей на упарку, а также состав кубового продукта, до которого может отгоняться легкокипящий компонент. При этом следует всегда помнить, что при оголении греющей поверхности теплообменного аппарата температура стенки и пленки кубового продукта, смачивающего эту поверхность, может приближаться к температуре самого теплоносителя, что может вызвать местные перегревы продукта, взрывчатое разложение термически нестабильного вещества. Поэтому при выпаривании и разложении продуктов, способных в концентрированном виде к самопроизвольному химическому разложению, следует принимать меры, исключающие [c.138]

    Причиной разрушения теплообменных аппаратов, обогреваемых горячей водой, водяным паром и другими теплоносителями, может быть также электрохимическая коррозия, возникающая при воздействии содержащихся в воде кислорода и двуокиси углерода. Электрохимическая коррозия приводит к образованию на поверхности металла окислов железа. Скорость ее протекания возрастает при высоких температурах и давлениях. [c.145]

    Известен взрыв газо-паровоздушной смеси в теплообменном аппарате. В этом случае аппарат после гидравлического испытания был не полностью освобожден отводы. При понижении температуры окружающей среды вода в нем замерзла. Поскольку аппарат не был отглушен от системы, находящейся под давлением углеводородных газов, последующий отогрев замороженных участков привел к взрыву и пожару. [c.313]

    При температурах, превышающих температуру начала кристаллизации сырьевого раствора, охлаждение осуществляют в обычных теплообменных аппаратах, а в области температур, при которых из раствора выкристаллизовывается твердая фаза, — в обычных вертикально или горизонтально расположенных цилиндрических емкостях высокого давления или в скребковых кристаллизаторах типа труба в трубе . В качестве хладагента в большинстве случаев применяют испаряющийся аммиак, но можно применять также и сжиженный пропан. В начальной стадии охлаждения в качестве хладагента используется отходящий холодный фильтрат. [c.178]

    Представляет интерес характер изменения температур жидкостей, обменивающихся теплом при прямотоке и противотоке. На рис. 4. 10 дано сопоставление температурных режимов работы теплообменных аппаратов при прямотоке и противотоке. По осям абсцисс отложена поверхность нагрева Р, а по осям [c.64]

    Обессоленная и обезвоженная нефть насосом прокачивается через группу теплообменников 9, 11, 27, 23, 67, 69, 65, 74 и с температурой 210 °С поступает в колонну предварительного испарения (эвапоратор) 8 (на схеме не показан ход нефти через теплообменные аппараты в связи со сложностью обвязки). Фракция н. к. — 100 °С уходит с верха колонны и, пройдя через аппарат воздушного охлаждения 7 и холодильник 6, поступает в сборник 5. Часть этой фракции насосом 4 подается в качестве орошения [c.19]

    После теплообменника 12 не полностью охлажденный гидрообессеренный газойль подается насосом 14 в теплообменные аппараты 17 (на схеме показан один) для использования избыточного тепла и охлаждения до требуемой температуры. Отпарная колонна 11 в данном случае является стабилизационной колонной и обслуживается конденсатором-холодильником 13. Одна часть легкой фракции (отгона), собирающейся в приемнике 16, насосом 15 подается как орошение в колонну И, а другая — выводится с установки. Из приемника 16 сверху уходят газы стабилизации. [c.56]


    Характерной особенностью рассматриваемых теплообменных аппаратов (рис. 129) является жесткое крепление трубных решеток к корпусу (рис. 130). Это обстоятельство обусловливает возникновение температурных усилий в трубах и корпусе (кожухе) при различных температурах их нагрева, что может привести к нарушению развальцовки или обварки труб в решетках, продольному изгибу труб, если трубы нагреты больше, чем корпус, и др. В связи с этим кожухотрубчатые теплообменные аппараты жесткого типа (с неподвижными трубными решетками) обычно применяют, когда разность температур стенок труб и корпуса не превышает 30—50° С большая разность температур допускается для аппаратов большого диаметра О > 800 мм). [c.155]

    Испытания ГМК ЮГК, имеющих степень сжатия е=4,8 и среднее эффективное давление за цикл ре= = 4,4 кгс/см2, показали, что их эксплуатация с закрытой системой испарительного ВТО при поддержании температуры охлаждающей воды ш= 120- -124° дала ряд положительных результатов эффективный к. п. д. увеличился на 1,5—3,0%, расход воды на охлаждение сократился в 4—5 раз, расход электроэнергии уменьшился в 3 раза, рабочая поверхность теплообменных аппаратов снизилась в 3—4 раза. [c.226]

    Теплообменные аппараты типа труба в трубе предназначены для нагрева или охлаждения нефтепродуктов различными теплоносителями. Максимальная температура теплоносителей в межтрубном пространстве не должна превышать 200 С, а в трубном пучке 450° С. Теплообменные аппараты выпускают на условное давление в трубном пучке и межтрубном пространстве до 25 кГ/сж . [c.212]

    На рис. 3-26 показан стальной эмалированный теплообменный аппарат, предназначенный для конденсации паров и охлаждения жидкостей и газов. Рабочее давление в охлаждающих стака.нах и в аппарате 2 ати. Температура горячего теплоносителя на входе — до 120° С. Аппараты изготавливают с поверх,ностью нагрева 4 или [c.122]

    В табл. 4-14 приведены технические характеристики подогревателей азота и воздуха, основных теплообменных аппаратов и переохладителей жидких азота и воздуха. Теплообменные аппараты-подогреватели применяют для повышения температуры Жидкого азота или воздуха за счет теплообмена с горячей водой или с потоком петлевого воздуха. Эти теплообменники представляют собой [c.179]

    В зависимости от температуры рабочей среды устанавливают предельные рабочие давления в теплообменных аппаратах, которые. [c.194]

    Заводами нефтяного машиностроения выпускается большое количество теплообменных аппаратов по специальным заказам. В настоящее время они еще не все нормализованы. К ненормализованным аппаратам относятся и кожухотрубчатые теплообменные аппараты с неподвижными трубными решетками. Они применяются в тех слу- чаях, когда разность температур трубного пучка и корпуса не превышает 50 С, при этом среда, проходящая по межтрубному пространству, не должна выделять солен или других веществ, загрязняющих наружную поверхность трубок. [c.208]

    Применение вычислительных машин сокращает продолжительность расчетов и позволяет решать задачи по оптимизации параметров проектирования. Стоимость теплообменных аппаратов зависит от многих факторов величины поверхности теплообмена, применяемых материалов, конструкций, рабочей температуры, давления и т. д. Так, при повышении давления с 6 до 43 ат стоимость аппарата возрастает на 60%, а с повышением температуры с 300 до 480" С — в 2 раза. Наибольшую стоимость при данной поверхности теплообмена имеют теплообменники с плавающей головкой, наименьшую — с жесткими трубными решетками. [c.269]

    Известные методы расчета текущих и конечных температур теплообменных аппаратов применимы лищь к небольшому классу схем, используемых в промышленности. Так, существуют методы расчета для противотока и прямотока [1], методы расчета двухходовых секций смешанного тока [2], двух- и шестиходовых секций с четным и нечетным числом ходов, с неравными водяными эквивалентами ходов [31] и ряд других. [c.125]

    Вопрос о том, тепло каких потоков выгодно регенерировать, должен решаться в каждом конкретном случае в зависимости от температуры п количества того или иного потока. Важно также правильно выбрать степень регенерации тепла па установке. Обычно ущ,ествует некоторая оптимальная степень регенерации тепла, являющаяся наиболее экономичной. С углублением регенерации тепла увеличивается поверхность теплообменных аппаратов, возрастает температура отходящих дымовых газов в печн и снижается коэффициент полезного действия печи, вследствие чего может увеличиться расход топлива.В конечном счете экономия от снижения расхода воды па охлаждение и расход металла на холодильники может оказаться меньше, чем дополнительные затраты на топливо и по-ыерхность теплообмена. [c.145]

    Средняя разность температур в теплообменных аппаратах определяется в зависимости от схемы теплопередачи. Еслп температуры нагревающего и пагреваемого потоков постоянны, как, например,. [c.153]

    За рубежом тепло пародистиллятных фракций широко используется для предварительного подогрева нефтяного сырья. Так, на атмосферно-вакуумной установке фирмы Креол (Ве,несуэлла) производительностью 3 млн. т/год нефти в результате глубокой регенерации тепла всех видов горячих потоков (в том числе и пародистиллятных фракций) температура предварительного подогрева нефти достигает 260 °С. Нефть пропускается через теплообменные аппараты, обогреваемые теплоносителями в следующем порядке циркуляционные орошения атмосферной колонны— -пародистиллятные фракции атмосферной колонны— -верхние продукты вакуумной колонны— -боковые потоки атмосферной колонны— -боковые потоки вакуумной колонны— -вакуум-остаток. На обычных установках нефть поступает в атмосферную печь при 170—180 °С. Таким образом, благодаря регенерации тепла горячих потоков тепловая нагрузка печей уменьшается на 20—25%. [c.213]

    Такое построение можно применить для всех адиабатических равновесных реакций, что значительно сокращает расчет. Наряду с описанным промежуточным охлаждением на практике применяется и другой вид охлаждения, который состоит в дополнительном введении исходной смеси (холодный газ) в определенное, заранее установленное место реактора. В этом случае изменяется построение, изображенное на рис. 11-23, потому что при введении холодного газа из-за увеличения числа молей на входе выход уменьшается и вследствие уменьшения входной концентрации Сд наклон прямой увеличивается. На рис. 11-24 приводится построение для случая применения холодного (200° С) газа. Непосредственцре введение холодного газа экономически более выгодно, чем использование теплообменников (меньшая стоимость аппаратурного оформления). При этом достигается лучший теплообмен, так как газ с низкой температурой в аппарате немедленно нагревается до температуры входящего вещества [c.223]

    Аналогичные пределы применения по давлению и температуре в зависимости от материального исполнения установлены соот-ветствую1цими стандартами для теплообменных аппаратов с неподвижными трубными реи[етками, плавающей головкой, для [c.35]

    При теплопередаче с канденсацией пара -первичного теплоносителя расчет температуры вторичного теплоносителя на выходе из теплообменного аппарата производится ло формуле [c.12]

    Жесткая конструкщ1Я ярименяется в случаях, когда разность температур наружной и внутренней труб невелика и когда ие требуется механическая чистка труб. Теплообмениые аппараты типа ТТ-с применяются в случаях, когда необходима компенсация температурных расширений. Теплообменные аппараты типа ТТ-р применяются а случаях, когда при эксплуатации теплообменника требуется полный демонтаж внутренних труб. [c.109]

    Теплообменные аппараты с плавающей головкой предназначены для нагрева или охлаждения нефтепрвдуктов в жидком или парообразном состоянии. Предельные рабочие давления в них в зависимости от температуры теплоносителей приведены в табл. 5-1. [c.187]

    Теплообмеиные аппараты, предназначенные для работы при температуре среды от ЙОО до 400 С, изготовляют из спокойной стали. Детали теплообменных аппаратов с толщиной стенки до 26 мм, предназначенных для работы при температурах до 00°С, можно изготовлять из КВДяшей стали. [c.187]

    Из уравнения (5.4) видно, что для расчета тепловой нагрузки теилообменного аниарата необходимо знать количество продуктов, протекающих через теплообменник, и их температуру. Зная тепловую нагрузку теплообменного аппарата ( 2, рассчитывают поверхность теплообмена Р ио уравнению (4. 28)  [c.72]

    Пример 5. 1. Керосиновый дистиллят в количестве Gi = 30 000 кг/ч относительной плотностью = 0,850 охлай дается в теплообменных аппаратах от температуры = 210° С до 2 = 70° С, нагревая нефть (Сг — 50 ООО кг/ч, [c.73]


Смотреть страницы где упоминается термин Температура теплообменного аппарата: [c.144]    [c.16]    [c.27]    [c.204]    [c.9]    [c.10]    [c.10]    [c.122]    [c.194]    [c.268]    [c.73]   
Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности Издание 2 (1982) -- [ c.517 ]




ПОИСК







© 2024 chem21.info Реклама на сайте