Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия и массоотдача,

    Перенос вещества с поверхности экстрагируемых частиц в поток экстрагента осуществляется не только путем молекулярной диффузии, но и за счет переноса самой жидкости. В связи со сложностью механизма внешней диффузии (массоотдачи с поверхности твердого тела) аналитические решения, связанные с интегрированием нелинейных дифференциальных уравнений конвективной диффузии получены для ограниченного числа задач — тепло- и массообмена, связанных с обтеканием единичных тел простой геометрической формы (пластины, шара, цилиндра, вращающегося диска) [21]. [c.30]


    Коэффициенты массоотдачи и г характеризуют одновременный перенос вещества за счет молекулярной и конвективной диффузии и равны тому количеству диффундирующего компонента, которое передается в расчете на единицу межфазовой поверхности в единицу времени при единице движущей силы. Как видно из уравнения (111.146), последняя может выражаться по-разному. [c.211]

    Механизм конвективной диффузии накладывается на молекулярный перенос, характерный для ламинарного движения и по мере усиления турбулентности потока становится преобладающим фактором. Скорость массоотдачи увеличивается и в соответствии с уравнением Фика (11.15) может быть представлена следующим образом  [c.71]

    Отметим, что линейная связь между частным коэффициентом массоотдачи и коэффициентом диффузии не подтверждается экспериментальными данными. Для границы раздела жидкость — жидкость или жидкость — газ показатель степени при коэффициенте диффузии близок к 0,5. Однако такого вида зависимость может быть достигнута за счет определенного выбора толщины пленки. Например, щироко используемый в процессах горения метод приведенной пленки, представляющий собой модификацию пленочной теории, дает 0,5 для показателя степени при коэффициенте диффузии (см. раздел 6.2). [c.173]

    Несмотря на ошибочность допущения о независимости толщины пленки от коэффициента диффузии, приводящего к линейной зависимости между коэффициентом массоотдачи и коэффициентом диффузии, пленочная теория сыграла положительную роль в развитии массообменных процессов. Идеи, связанные с особой ролью тонких пленок и наличием равновесия на границе раздела фаз, а также вывод о существовании формул аддитивности фазовых сопротивлений, широко использовались в дальнейших исследованиях. [c.173]

    Как следует из соотношения (4.15), пенетрационная теория приводит к зависимости, в которой частный коэффициент массоотдачи определяется величиной, пропорциональной корню квадратному из коэффициента диффузии, что качественно согласуется с экспериментальными данными. [c.174]

    Кишиневский [228, 229], полагая, что массоперенос в пленке осуществляется путем турбулентной диффузии и что коэффициент диффузии в пленке постоянен, получил для коэффициента массоотдачи зависимость к = 2 у/(где 0-,. - коэффициент турбулентной диффузии), аналогичную формуле Хигби. Время контакта фаз Кишиневский предлагал определять для одиночных пузырьков как время прохождения пузырьком расстояния, равного его радиусу, а в распылительных колоннах — величиной времени между столкновениями капель друг с другом и о стенку. [c.174]


    Трактовка рассматриваемых явлений на основе прямого анализа системы дифференциальных уравнений, описывающих конвективную массоотдачу в системах твердая стенка—жидкость и газ—жидкость, дается теорией пограничного диффузионного слоя В этой теории учитывается сложность структуры турбулентности внутри вязкого подслоя, прилегающего непосредственно к поверхности раздела фаз. Весьма существенной является постепенность затухания турбулентных пульсаций в подслое. Вследствие этого, поскольку в жидкостях величина коэффициента молекулярной ди(М)узии Оа обычно во много раз меньше величины кинематической вязкости V (v/Dд > 1), турбулентные пульсации, несмотря на их затухание, играют существенную роль в переносе массы почти до самой границы фаз. Пренебречь их влиянием можно лишь в пределах подслоя, названного диффузионным , толщина которого в жидкостях значительно меньше толщины вязкого подслоя. В пределах этого диффузионного подслоя преобладающим является перенос молекулярной диффузией. [c.101]

    Ключевой задачей теории является определение степени затухания коэффициентов турбулентного обмена с приближением к межфазной границе. Недостаточная разработанность теории турбулентности вообще и особенно в применении к системам жидкость—газ не позволяет пока сделать это строго, исходя лишь из гидродинамических соображений. Однако количественная оценка характера затухания возможна на основе надежных экспериментальных данных о зависимости коэффициента массоотдачи от коэффициента молекулярной диффузии. Показатели степени в законе затухания коэффициентов турбулентного обмена и в зависимости к от Оа связаны простым соотношением. Поэтому выявление характера влияния О а на ки по выражению Д. А. Франк-Каменецкого позволяет как бы физико-химически зондировать пограничный слой. В частности, для свободной границы жидкость-газ, как будет показано ниже, многочисленными экспериментальными работами в большинстве практически важных случаев установлена пропорциональная зависимость между к и коэффициентом молекулярной диффузии в степени 0,5. Это соответствует полученным на основании некоторых допущений предсказаниям основанным на квадратичном законе затухания. Доп. пер. [c.101]

    Кинг рассмотрел возможность интерпретации суммарного переноса вещества как результата комбинированного воздействия молекулярной и вихревой диффузии, причем последняя пропорциональна некоторой степени п расстояния от поверхности. При этом коэффициент массоотдачи может быть пропорционален коэффициенту диффузии Д в степени от О до 1 (в соответствии со значением ). На основе модели спокойной поверхности Кинга получено выражение для содержащее два параметра, отражающих гидродинамические [c.102]

    У-9-3. Модели поверхностного обновления. Данквертс показал, что при использовании любой из двух моделей поверхностного обновления и равенстве коэффициентов диффузии всех компонентов скорость абсорбции также может быть найдена умножением коэффициента физической массоотдачи на движущую силу, равную количеству газа, которое требуется для насыщения единицы объема основной массы жидкости, когда концентрация свободного (непрореагировавшего) газа А возрастает от А° до Л.  [c.130]

    Значения кд для других газов при тех же условиях могут быт ь вычислены в соответствии с изложенным ниже (см. раздел 1Х-1-1). Кажется наиболее вероятным, что коэффициенты массоотдачи в газовой фазе изменяются пропорционально квадратному корню из коэффициента диффузии абсорбируемого газа, что и следует учитывать при внесении соответствующих поправок в получаемые значения кд. [c.180]

    Коэффициент массоотдачи в жидкой фазе обычно изменяется с вязкостью жидкости не только вследствие связанного с этим изменения коэффициента диффузии, но и из-за влияния вязкости на гидродинамическую обстановку. Примеч. пер. [c.232]

    Наблюдая одновременно с абсорбцией двуокиси углерода аминами десорбцию из раствора различных газов (гелия, закиси азота и ксенона), Ю. В. Аксельрод и др.19в нашли, что возникающая нестабильность приводит, кроме увеличения значений ku, к снижению влияния коэффициента диффузии D на вплоть до полной независимости kt от D. В то же время при отсутствии абсорбции СО, тем же раствором амина коэффициент физической массоотдачи был пропорционален DO,5. [c.250]

    Г и л ь д е и б л а т И. А., Р од и о н о в А. И.. Л а ш а к о в А. Л., Теор. основы хим. технол., 3. 344 (1969). Экспериментальное исследование влияния коэффициента диффузии на интенсивность массоотдачи в жидкой фазе в колоннах с барботажными тарелками провального типа. [c.269]

    Другая теория, весьма близкая к взглядам Нернста, была предложена-Лэнгмюром [2]. Для поверхности раздела твердое тело — жидкость Лэнгмюр также постулировал неподвижность пленки, в которой сосредоточено основное сопротивление массопередаче. Для систем жидкость — газ он предполагал лищь отсутствие относительного движения жидкостной и газоЬой пленок, допуская при.этом возможность строго ламинарного движения (с однородным профилем скоростей) в направлении, параллельном поверхности раздела. Это предположение не изменило основных выводов пленочной теории. Х отя гипотеза о неподвижных пленках и вытекающий из нее вывод о линейной зависимости между коэффициентами массоотдачи и молекулярной диффузии оказались неверными, пленочная теория сыграла пoлoжиteльнyю роль в развитии представлений о мас-сообмене. Предположение об особом значении процессов, происходящих в тонком слое вблизи поверхности раздела фаз, допущение о наличии термодинамического равновесия на границе раздела фаз, а также вывод этой теории об аддитивности диффузионных сопротивлений — в большинстве случаев сохраняют свое значение и в настоящее время. [c.169]


    Решение уравнения (16.7) совместно с краевыми условиями, выражающими постоянство концентрации на межфазной границе и вдали от нее, приводит к отедующей связи между коэффициентом массоотдачи k п коэффициентом молекулярной диффузии А о что эквивалентно St S .  [c.173]

    Понимая, что теория проницания в своем первоначальном виде непригодна для описания массообмена при турбулентном движении фаз, Коларж [29, 30] предпринял попытку связать время контакта т с характеристическими параметрами турбулентности в потоке, обтекающем твердую поверхность. Основной постулат теории Коларжа состоит в допущении, что перенос массы и тепла с твердой поверхности в объем лимитируется сопротивлением турбулентных пульсаций масштаба Яо, равного внутреннему масштабу турбулентности (т. е. такому критическому размеру турбулентных пульсаций, при котором начинают сказываться вязкие силы). Если предположить, что турбулентные вихри масштаба вплотную подходят к стенке и что перенос внутри таких вихрей осуществляться посредством нестационарной молекулярной диффузии, то для коэффициента массоотдачи получится выражение  [c.175]

    Это и есть хорошо известный закон Фика. Его используют для определения коэффициента диффузии в условиях массоотдачи, эквимолярной в противоположных направлениях. [c.65]

    Скорость переноса вещества н фазе обратно пропорциональна сопротивлению сред1.(, которое складывается из сопротивлений, оказываемых основной массой среды, буферным и пограничным слоями. Часто оказывается удобным условно рассматривать все явление массоотдачи как происходящее за счет только молекулярной диффузии в области постоянного градиента концептрации или, в случае газов, постоянного градиента парциального давления. В этом случае вводится фиктивная толщина ламинарного слоя бе, в котором сонротивление диффузии принимается равным сумме сопротивлений реального ламинарного слоя, буферного слоя и турбулентной зоны.  [c.71]

    Размерность [м час],кг [молъ1м час] и к1-" [моль м" час ат. Коэффициент массоотдачи характеризует одновременный перенос вещества за счет молекулярной и конвективной диффузии и равен тому количеству диффундирующего компонента, которое передается в расчете на единицу межфазовой поверхности в еди- [c.72]

    Каждый член в правой части уравнений (11.42) и (П.4.Я) представляет сопротипления массоотдаче внутри соответствующей фазы. тoяп aя же в левой части величина, обратная коэффициенту массопередачи, япляется общим сопротивлением переносу из одной среды в другую, складывающимся из отдельных сопротивлений диффузии 1 нутри каждой из фаз. [c.76]

    Если диффундирующее вещество слабо растворимо в жидкой среде, то параметр т должен быть велик, ибо при равновесии весьма малая концентрация в жидкой фазе должна соответствовать большой концентрации в газе. Член 11т к в (11.43) становится пренебрежимо малым, и общий коэффициент массопередачи Кх практически совпадает с коэффициентом массоотдачи ж-В этом случае главное сонротивление диффузии оказывается ншдкостью и поэтому говорят, что ход массопередачи контролируется пограничным слоем на жидкостной стороне межфазовой поверхности. Если же диффундирующее вещество хорошо растворимо в жидкой среде, то параметр т должен быть мал, ибо нри равновесии уже небольпшя концентрация а в газовой фазе соответствует весьма больпкш концентрации его в жидкости. Член т кт в (11.42) становится пренебрежимо малым, и общий коэффициент массопередачи Ку практически совпадает с коэффициентом массоотдачи k . В этом случае главное сопротивление диффузии оказывается уже газом и поэтому говорят, что ход массопередачи контролируется пограничным слоем на газовой стороне межфазовой поверхности. [c.76]

    Массообмен. Перенос массы в направлении поверхности соприкосновения фаз может происходить в результате молекулярной диффузии и конвекции, вызва.нной гидростатическими силами, течением потока или использованием перемешивающих устройств. Отдельный случай представляет собой движение турбулентного потока, в котором можно различить две зоны ламинарную (слой около поверхности соприкосновения фаз — пограничный слой) и турбулентную (в глубине фазы — ядро потока). В ламинарном слое вещество переносится главным образом молекулярной диффузией, а в турбулентной зоне в основном вследствие завихрений и флуктуаций локальной скорости движения потока. Считая, что в турбулентной зоне концентрация практически выравнивается, перенос массы в такой системе можно представить как молекулярную диффузию через пограничный ламинарный слой с эффективной (приведенной) толщиной. Перенос вещества до границы раздела фаз называется массоотдачей. [c.244]

    Таким образом, в этом случае сопротивление диффузии определяет скорость превращения, и процесс проходит в диффузионной области. Когда же коэффициент массоотдачи О/г велик по сравнению с константой скорости химической реакции к D z к), уравнение (VIII-172) приобретает вид  [c.248]

    Тур и Марчелло [231] рассматривали пленочную и пенетращюнную теории как крайние случаи процесса переноса, для которых в формулах коэффициента массоотдачи показатель степени при коэффициенте диффузии принимает предельные значения, равные 1 и 0,5, соответственно. Они считали, что в реальных условиях значения показателя степени могут колебаться между этими величинами. Предложенная ими пленочно-пенетрационная модель также основана на идее обновления поверхности турбулентными вихрями, но с более гибким учетом периода обновления. При малых временах пребывания вихря на поверхности процесс массопередачи нестационарен (пенетрационная теория), тогда как при больших временах успевает установиться постоянный градиент концентраций и наблюдается стационарный режим (пленочная теория). Для произвольных значений времен обновления модель учитьгеает оба механизма массопередачи — стационарный и нестационарный. Математическая формулировка пленочно-пенетрационной модели сводится к решению уравнения (4.12) при условии, что постоянное значение концентрации задается не на бесконечность, как в модели Хигби, а на конечном расстоянии от поверхности тела. Величина этого расстояния, как правило, неизвестна, и не указаны какие-либо надежные модели ее определения. [c.175]

    В последнее время появились работы, в которых при экспериментальном определении зависимости коэффициента массоотдачи в жидкой фазе от коэффициента диффузии значения последнего изменялись примерно на порядок. Изменения же величин Оа на полпорядка стали обычными в практике подобных работ 5 последних лет. Кроме того, значительно расширились и сведения [c.107]

    У-9-5. Критерий мгиовеииости реакции. Все реакции протекают с конечными скоростями, и понятие мгновенной реакции является идеализированным. Поэтому требуется какой-то общий критерий для оценки того, может ли данная реакция считаться мгновенной. Вообще говоря, мгновенности протекания реакции способствуют высокая удельная скорость реакции растворенного газа и низкое значение коэффициента массоотдачи для физической абсорбции. В таких условиях скорость процесса полностью лимитируется диффузией реагентов, а скорость реакции достаточна для поддержания равновесия во всех точках раствора кинетика реакции при этом не играет существенной роли. [c.135]

    Возможно использование моделей, описанных в главе IV, в которых каждый элемент поверхности жидкости экспонируется газу до замены его жидкостью из основной массы в течение одинакового промежутка времени 0. В таких установках точно моделируется механизм абсорбции, постулируемый моделью Хигби. При этом, еслн коэффициент массоотдачи в жидкой фазе для газа с коэффициентом диффузии О А равен то продолжительность экспозиции в модели должна быть 40А1(пк1). Колонны с орошаемой стенкой, обеспечивающие продолжительность контакта порядка 0,5 сек, подходят для моделирования насадочных колонн, а ламинарные струи с контактом, равным нескольким тысячным секунды, — для моделирования барботажных тарелок. [c.176]

    Гильденблат И. А.. ЛашаковА. Л.. Крашенинникове. А., Родионова. И., Теор. основы хим. технол., 3, 305 (1969). О влиянии коэффициента диффузии на массоотдачу в пленке жидкости. [c.269]

    Родионов А.И., У л ьянов В. И.,Влади миров А. Н., Труды МХТИ им. Д. И. Менделеева, вып. 60, 1969, стр. 148. Исследование массоотдачи (влияния на нее скорости газа, запаса жидкости и коэффициента диффузии) при испарении жидкостей в газовую фазу в колонне с провальными тарелками. [c.274]

    Т и б и л о в С. Г., Р а м м В. М., Б а р а н о в а А. Р1., Техн. и эконом, информ. НИУИФ им. Я. В. Самойлова, Л 1—2, 81, 89, 93 (1966). Исследование абсорбции хорошо растворимых газов в дисковой колонне. Исследование влияния концентрации олеума на абсорбцию серного ангидрида в дисковой колонне. Влияние коэффициента диффузии на коэффициент массоотдачи в газовой фазе в насадочной колонне. [c.276]


Смотреть страницы где упоминается термин Диффузия и массоотдача,: [c.360]    [c.49]    [c.170]    [c.170]    [c.61]    [c.65]    [c.73]    [c.99]    [c.106]    [c.106]    [c.252]    [c.283]    [c.457]    [c.109]    [c.147]   
Массопередача (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Массоотдача



© 2025 chem21.info Реклама на сайте