Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические углеводороды физические

    Механизм образования сажи (дисперсного углерода) при горении реактивного топлива и в общем случае при химических превращениях углеродсодержащих веществ изучен еще недостаточно. Исследователи основную роль отводят полимеризации или цепным разветвленным реакциям. В последнем случае физико-химическая модель процесса включает разветвленные цепные реакции образования радикалов-зародышей, превращение их в зародыши твердой фазы (минимальные частицы, имеющие физическую поверхность) и дальнейший рост зародышей за счет гетерогенного разложения углеводородов на их поверхности. Сторонники полимеризационной схемы отмечают, что образование ацетилена наблюдается даже в метано Кисло-родном пламени. После достижения максимальной концентрации ацетилен превращается в моно- и полициклические ароматические углеводороды и полиацетилен. Экспериментально показано также, что в соответствующих условиях появлению сажевых частиц предшествует образование (в результате полимеризации) крупных углеводородных молекул с молекулярной массой примерно 500. [c.168]


    Определение содержания ароматических углеводородов. Физические константы ароматических углеводородов значительно отличаются по абсолютной величине от констант предельных углеводородов. Это положено в основу многих методов определения количественного содержания ароматических углеводородов в бензиновых и керосиновых фракциях, не содержащих непредельных углеводородов. [c.63]

    Октановое число смешения. Современныетоварныеавтобензи — ны готовят, как правило, смешением (компаундированием) компонен — тов, получаемых в различных процессах нефтепереработки, различающихся физическим и химическим составом. Установлено, что ДС смеси компонентов не является аддитивным свойством. Октановое число компонента в смеси может отличаться от этого показателя в чистом виде. Каждый компонент имеет свою смесительную характеристику или, как принято называть, октановое число смешения (04С). (34С парафиновых углеводородов как нормального, так и изостроения близки к их 04 в чистом виде. ОЧС ароматических углеводородов, как правило, ниже, чем 04 их в чистом виде эта разница достигает до 30 и более. Например, бензол, имеющий в чистом виде 04 113 единиц, при [c.108]

    Нефтяные фракции, полученные при прямой перегонке нефти, содержат различные количества нежелательных примесей и поэтому зачастую требуют дополнительной очистки при помощи химических методов. Некоторые классы соединений могут рассматриваться в качестве примесей или нежелательных компонентов только для определенных фракций. Так, ароматические углеводороды желательны в бензине, но нежелательны в керосине. Другие классы соединений следует считать примесями пли нежелательными компонентами для всех нефтепродуктов. Сюда в первую очередь относятся легко окисляемые и вообще химически нестабильные соединения, а также смолистые или асфальтеновые вещества. Вредными, как правило, являются сернистые соединения, и их предельно допустимое содержание обычно строго ограничивается техническими нормами на нефтепродукты. В тех случаях, когда очистка нефтепродукта от примесей или нежелательных компонентов недостижима обычными физическими методами, прибегают к химическим методам очистки при помощи различных реагентов, которые селективно реагируют с веществами, подлежащими удалению. [c.222]

    Углеводороды алканы, алкены, алкины, диеновые углеводороды, ароматические углеводороды (физические и химические свойства, способы получения). Представление о строении циклоалканов. Кислородсодержащие соединения спирты одноатомные и многоатомные, фенол, альдегиды, карбоновые кислоты, сложные эфиры (физические и химические свойства, способы получения и области применения, медико-биологическое значение). Азотсодержащие соединения амины алифатические и ароматические, аминокислоты (физические и химические свойства, способы получения, медико-биологическое значение). Строение отдельных представителей аминокислот глицина, аланина, цистеина, серина, глутаминовой кислоты, лизина, фенилаланина и тирозина. Строение и химические свойства гетероциклических соединений (пиридин, пиррол, пиримидин, пурин). Строение пиримидиновых и пуриновых оснований цитозина, урацила, тимина, аденина, гуанина. [c.758]


    Применяемые растворители должны обладать высокой избирательностью по отношению к ароматическим углеводородам. Физические характеристики растворителей должны обеспечивать легкое разделение двух фаз в практически приемлемом диапазоне температур, например между —30 и -1-120°. Из растворителей, предложенных для выделения низших ароматических углеводородов, применяют те же самые, которые используют для очистки керосина и смазочных масел, т. е. жидкий сернистый ангидрид, нитробензол, фенол, фурфурол и т. п. В самое последнее время в промышленности стали экстрагировать ароматические углеводороды водным диэтиленгликолем. [c.246]

    Дегидрогенизация димера пиперилена в присутствии палладиевого катализатора, приготовленного по Зелинскому П, привела к получению ароматического углеводорода, физические константы которого оказались близкими к константам 1-метил-З-пропилбензола [ ] (табл. 3)  [c.416]

    Регенерированные ароматические углеводороды промывались вначале дистиллированной водой, затем 10, -ным раствором соды и снова дистиллированной водой до нейтральной реакции. После высушивания над хлористым кальцием перегонялись над металлическим натрием на колонке с эффективностью 40 теоретических тарелок. Определялись физические показатели. [c.47]

    Физические показатели фракций ароматических углеводородов приведены в табл. 1. [c.72]

    Для определения группового состава жидкость предварительно разделяют на фракции НК —60°С, 60—95°С, 95— 122 °С, 122—150 °С, 150—200 С, 200 °С — КК. Затем каждую фракцию подвергают анализу. Вначале стандартными методами определяют содержание ароматических углеводородов. После удаления из фракций ароматических определяют содержание нафтеновых и метановых (парафиновых) углеводородов. Из-за низкой реакционной способности этих углеводородов их количественное определение основано главным образом на физических способах (перегонка, хроматография, кристаллизация, спектрометрия, растворение в различных растворителях и др.). В последнее время стали щироко использовать хроматографический метод исследования жидких углеводородов для определения их индивидуального состава. Выбор метода определяется целями исследования. На начальном этапе, когда требуется идентифицировать (установить тип) месторождение и возможные направления использования его продукции, очевидно, необходимо использовать весь арсенал аналитических средств с тем, чтобы установить полный детальный состав пластового флюида. [c.22]

    Для деароматизированного катализата, после соответствующей промывки, сушки и перегонки, в присутствии металлического натрия, были определены те-же физические показатели, что и до удаления ароматических углеводородов [2]. [c.93]

    Деароматизированные фракции промывались дистиллированной водой, 10%-ным раствором соды, снова дистиллированной водой до нейтральной реакции и после сушки над хлористым кальцием перегонялись в присутствии металлического натрия. Были определены те же физические показатели, что и до удаления ароматических углеводородов, значения которых даны в табл. 1. [c.126]

    В таком случае депрессия анилиновых точек и изменение других физических свойств бензинов, на основании которых вычисляется их групповой состав, будут вызваны удалением не только ароматических углеводородов, ио и неуглеводородных примесей, что будет влиять на точность вычисления группового состава бензинов. Как известно, коэффициенты, [c.151]

    Ароматические углеводороды, образовавшиеся в результате катализа удалялись также, как ароматические углеводороды бензина прямой гонки. Деароматизированные катализаты после промывки и сушки перегонялись над металли ческим натрием и для ннх определялись те же физические показатели, т, е. максимальная анилиновая точка, удельный-вес и показатель лучепреломления, что и до деароматизации катализатов (см. табл. 1). По депрессии анилиновых точек методом ГрозНИИ [25] вычислялось количество образовав--168 [c.168]

    Однако, как уже было указано, эти свойства изменяются, если горючие сланцы перерабатываются при более высоких температурах. В табл. 4 приведены результаты анализов масел, полученных перегонкой при температуре 649 ". Эти масла содержат 39,2% продуктов, соответствующих бензиновым фракциям, и 72,4% масел, выкипающих до 300° при давлении 40 мм рт. ст. Температура застывания этих масел только 16° и вязкость 7,5 сст при 37,8°. Эти существенные различия в физических свойствах указывают на значительные изменения их состава. Для масла, полученного при температуре 816°, замечены дополнительные изменения состава, выражающиеся еще в более высоком содержании ароматических углеводородов при малом отличии пределов выкипания по сравнению с маслами, перегнанными при температуре 649°. [c.62]

    Сан-Ойл) между физическими свойствами, а именно предложенного Липкиным соотношения между плотностью и коэффициентом плотности (или молекулярным весом) для алкилированных ароматических углеводородов и индекса двойной связи, связывающего удельную дисперсию, обусловливаемую ароматической частью молекулы, с молекулярным весом. [c.371]


    В ранних работах по изомеризации парафинов применялся лишь один метод анализа, основывавшийся на тщательной фракционной разгонке продуктов изомеризации и определении их физических констант. Циклопарафины представляли специальный случай, где анализ можно было основывать на избирательной дегидрогенизации алкилцикло-гексанов в соответствующие ароматические углеводороды. За последние годы развитие методов инфракрасной спектроскопии и масс-спектро-скопии для полного анализа сложных смесей изомеров оказало необходимую помощь в изучении реакции изомеризации. [c.15]

    ФИЗИЧЕСКИЕ ПРОЦЕССЫ РАЗДЕЛЕНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ [c.57]

    В ближайших отделах излагаются известные методы анализа смесей бензина с ароматическими углеводородами при условии, что содержание последних далеко не превосходит 50%. Литература по этому вопросу довольно обширна, но хороших методов нет. Можно разделить их на физические и химические, но в сомнительных случаях должно пользоваться и теми и другими. [c.145]

    Физические свойства ароматических углеводородов, выделенных из фракции 150—200 С сацхенисской нефти [c.48]

    Определение ароматических углеводородов. Физические константы ароматических углеводородов существенно отличаются от величин, свойственных алкановым и циклоалкановым углеводородам. Это позволяет количественно определять ароматические углеводороды в бен-i зиновых и керосиновых фракциях, если последние не содержат непредельных соединений. Если же непреч дельные углеводороды содержатся, их отделяют, опре-деляют их количество описанным ниже способом. [c.136]

    Таким образом, фракция ароматических углеводородов 159—164° содержит в основном мезителен, с чем согласуются и физические свойства фракции. [c.81]

    Полнота деароматизации проверялась по А. М. Настю-кову [4]. Для деаромати.чированной фракции после соответствующей промывки, сущки и перегонки были определены те же физические пока. атели, что п до удаления ароматических углеводородов, значения которых приведены в табл. 1. [c.33]

    Ароматические углеводороды из фракции 150—200°С в количестве 170 мл перегонялись на колонке с эффективностьк> 40 теоретических тарелок. Результаты перегонки приведены к нормальным условиям. При давлении 50 мм рт. ст. получено 15 qbpaкций, для которых определены физические по.чаза-тели (табл.) [c.48]

    Ароматические углеводороды, образовавшиеся в результате катализа, удалялись также, как и ароматические углеводороды, содержавшиеся в бензине прямой гонки. Деарома-тнзированные катализаты промывались, сущились, перегонялись для них определялись те же физические показатели,, т. е. анилиновая точка, удельный вес и показатель преломления. Пользуясь депрессией анилиновых точек и соответствую- [c.153]

    Для установления индивидуальной природы ароматических углеводородов, входящих в состав бензино-лигроиновой фракций патараширакской нефти, последняя подвергалась дробной перегонке, собраны фракции с т. кип. °С 60—95 95—122 122—150 и 150—200. Для выделения ароматических углеводородов из указанных фракций, они подвергались сульфированию, сульфокислоты разлагались [6]. Выделенные ароматические углеводороды после соответствующей промывки и сушки перегонялись. Собраны фракции, физические показатели которых даны в таблице. [c.57]

    Физические свойства исследуемой фракции до и после катализа, как до, так и после удаления ароматических углеэодородов, а также групповой состав и физические-свойства фракций ароматических углеводородов (135—155°,. 155—175°, 175—195°, 195—220°), образовавшихся в результате катализа, приведены в предыдущем сообщении [2], поэтому в данной работе их не приводим. [c.94]

    Если бензиио-лигроиновые фракции не подвергаются предварнтельно такой обработке, тогда вышеуказанные неуглеводородные компоненты будут удаляться в процессе де-ароматизации фракций и перегонки их в присутствии металлического натрия. В таком случае, депрессия анилиновых точек и других физических свойств бензинов, на основании которых вычисляется их групповой состав, будет вызвана удалением не только ароматических углеводородов, но и неуглеводородных примесей, что будет влиять на точность вычисления группового состава бензинов. [c.166]

    После деароматнзации фракции промывались, сушились и перегонялись в присутствии металлического натрия, затем для них были определены те-же физические показатели, что и до удаления ароматических углеводородов, значения которых приведены в табл. 1 там же даны физические свойства исходных фракций. [c.167]

    В результате хроматографической адсорбции были получены смесь ароматических углеводородов и парафино-нафтеновая часть исследуемого бензина. После отгонки изо-пентана парафпно-иафтеновая часть была разогнана иа узкие фракции с использованием вышеуказанной ректификационной колонки. После установления процентного содержания этих фракций в бензине были определены нх физические показатели. Результаты разгонки и свойства указанных фракций приведены в табл. 4. [c.212]

    Изомеризаты промывались водой, 10%-ным раствором соды, снова водой, сушились хлористым кальцием, перегонялись над металлическим натрием и затем определялись кои- х танты. Для определения количества вновь образовавшихся циклогексановых углеводородов изомеризаты подвергались дегидрогенизации над вышеуказанным катализатором. По окончании дегидрогенизации нзомеризат-катализаты сушились, перегонялись над металлическим натрием и определялись физические свойства. После удаления ароматических углеводородов из бензина и соответствующей его промывки, сушки и перегонки снова определялись те же константы. Зная количество циклопентановых углеводородов, находящихся в исследуемом бензине до изомеризации, значение анилиновых точек изомеризат-катализатов и деароматизи-роваиных изомеризат-катализатов, определялся прирост ароматических углеводородов и количество изомеризованных циклопентановых углеводородов. Данные, полученные в результате исследова)шя приведены в таблицах (7,8). Проведенное исследование показало, что максимальный эффект изомеризации достигается применением гумбрина в качестве катализатора, активированного 30%-иым раствором соляной кислоты. [c.230]

    Технологические процессы НПЗ принято классифицировать иа (бедующие 2 группы физические и химические (табл,3.6). физическими процессами (перегонка, сольвентная деасфальтизация, экстрак — I щя полярными расворителями, депарафинизация адсорбционная, кар — бамидная, кристаллизация и др.) достигается разделение нефти на составляющие компоненты (топливные и масляные фракции) без химических превращений или удаление (извлечение) из фракций или остатков нефти нежелательных групповых химических компонентов (асфальтенов, полициклических ароматических углеводородов) из масляных фракций, парафинов из реактивных, дизельных топлив и масел, тем самым снижая их температуру застывания. [c.92]

    При разработке месторождений на истощение в результате ретроградных явлений в пласте выделяются в первую очередь наиболее ценные высококипящие ароматические и нафтеновые углеводороды. Таким образом, ретроградная конденсация в пласте не только уменьшает выход конденсата, но и снижает его качество, так как при наличии ароматических и нафтеновых углеводородов из газоконденсата можно получать бензины требуемого качества лишь его физической перегонкой. Снижение же содержания ароматических углеводородов в конденсате требует применения вторичных процессов для повышения качества брпзннов. С этой точки зрения, оценивая систему разработки газоконденсатного месторождения, недостаточно гово )нть об изменении газоконденсатного фактора, но следует подчеркнзать и изменение группового состава. [c.208]

    Полное количественное отделение полициклических ароматических углеводородов от неуглеводородных компонентов не может быть осуществлено ни одним из известных физических и химических методов. По этой причине ароматика в газойлях и смазочных маслах включает ароматические углеводороды и неуглеводородныс компоненты, выделенные вместе с углеводородами. Несомненно, что неуглеводородные компоненты, присутствующие в высококипящих продуктах, являются по существу ароматическими, т. е. атомы кислорода, серы или азота в этих соединениях связаны с ароматическим, возмоншо полициклическим кольцом. С этой точки зрения термин ароматпка>> в применении к тяжелым нефтяным фракциям, по-видимому, является законным. [c.27]

    В заключение можно сказать, что ионный механизм каталитического крекинга обоснован непосредственно большой работой Уитмора по изучению реакций олефинов с участием иона карбония. Многие дополнительные исследования для доказательства ионного механизма были проделаны английскими химиками, детально изучившими ионные механизмы многих органических реакций. Можно упомянуть работу Шмерлинга и Бартлетта по алкилированию олефинов изопарафинами, недавно опубликованную работу Броуна по алкилированию методом Фриделя-Крафтса ароматических углеводородов алкил- и арилгалоидами и цитированную уже работу Бика и сотрудников. Физические данные были получены посредством спектроскопического изучения растворов углеводородов в кислотах, которые, как считается, генерируют ионы карбония, и посредством определения потенциалов, появления углеводородных ионов, особенно алкил-ионов в масс-спектрометре. Отсюда можно было перейти к термодинамическим данным, что дает возможность предсказывать некоторые важные свойства ионов карбония. [c.138]

    Сопоставляя отдельные физические свойства ароматических углеводородов, Мартин (Martin) и Санкин (Sankin) [60] сделали вывод, что ароматические углеводороды, имеющие три ядра в молекуле, относятся в основном к фенантренам. [c.21]


Смотреть страницы где упоминается термин Ароматические углеводороды физические: [c.76]    [c.67]    [c.88]    [c.137]    [c.137]    [c.141]    [c.296]    [c.82]   
Технология нефтехимических производств (1968) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические углеводороды ряда бензола физические свойства

Ароматические углеводороды ряда физические свойства

Углеводороды, ароматические физические свойства

Физические и термодинамические свойства ароматических углеводородов

Физические и химические свойства ароматических углеводородов

Физические процессы разделения ароматических углеводородов

Физические свойства некоторых ароматических углеводородов



© 2025 chem21.info Реклама на сайте