Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Функциональные группы физические методы

    В качественном анализе органических веществ применяют реактивы, которые дают возможность идентифицировать определенные функциональные группы или получать производные изучаемых веществ с хорошо изученными свойствами. Особый интерес представляют цветные реакции, дающие возможность достаточно быстро идентифицировать вещество, а измерив оптическую плотность раствора продукта реакции, и определить его количество. Для идентификации и особенно проверки чистоты органического вещества обязательно определение физических констант— температуры плавления (или разложения, если вещество неустойчиво при нагревании) или при идентификации жидких веществ — плотности, температур кипения и замерзания, показателя преломления. При исследовании органических веществ особое значение приобрели хроматографические методы. [c.805]


    Модификацией имеющихся полимеров можно быстрее и экономичнее получить новые полимерные материалы. В промышленности используют следующие методы модификации 1) изменение химического строения макромолекул полимера (химическая модификация) 2) изменение физической структуры полимера без изменения его молекулярной массы и химического строения (структурная модификация) 3) применение смесей полимера с другими соединениями. Наиболее часто используется химическая модификация, которая осушествляется введением новых функциональных групп в молекулу полимера, введением новых звеньев в макромолекулу (синтез сополимеров) и получением привитых и блочных сополимеров, а также разветвленных и пространственных полимеров. [c.200]

    Величина молекулярной массы, определяемая по количеству концевых групп, зависит от числа молекул полимера и является среднечисловой молекулярной массой. Метод применяется для линейных конденсационных полимеров, которые содержат реакционноспособные функциональные концевые группы ОН, СООН, МНг и др. Так как реакционная способность таких функциональных групп не зависит от молекулярной массы полимера, то для их определения применяют обычные методы анализа функциональных групп. Концевые группы определяют химическими или физическими методами (калориметрическими, спектроскопическими, радиометрическими и др.). Этот метод определения молекулярных масс полимеров наиболее эффективен в пределах 10 —10 . [c.163]

    Химические методы установления строения основываются на проведении с помощью реагентов таких реакций, которые позволяют судить о наличии определенных атомных группировок (функциональных групп) или ионов в молекуле исследуемого соединения. Физические методы установления строения получают все большее развитие. С их помощью устанавливается не только строение исследуемого соединения, но также оказывается возможным определить детали структуры молекулы, например размеры молекулы, атомные расстояния и углы между связями. Физические методы определения строения имеют не только большие возможности по сравнению со старыми методами классической химии, но также позволяют значительно сократить время исследования. В случае же сложно построенных молекул старые методы установления строения вообще бессильны. [c.132]


    Элементарные составляющие химических компонентов — атомы, молекулы, функциональные группы атомов, ионы, формульные единицы ионов — узнаются и определяются по аналитическим сигналам, которые возникают при протекании определенных процессов внутри этих объектов или между ними. Химику-аналитику при этом безразлично, имеет ли такой процесс химический характер или причиной возникновения сигнала служит чисто физическое явление. Другими словами, для получения информации об элементарных составляющих химических компонентов исследуемого материала аналитик использует все возможности. При классификации же аналитических методов характер процесса, обусловливающего возникновение аналитического сигнала, должен играть первостепенную роль. На этой основе методы анализа можно подразделять на химические, электрохимические, спектроскопические и радиохимические. [c.17]

    В исследовании углеводородов высококипящей нефти отчетливо прослеживается различие и многообразие химического строения молекул, которое значительно усиливается при переходе к гетеро-органическим соединениям. Дистилляты, выкипающие при температуре выще 300°С, отличаются как химической, так и физической неоднородностью для них характерно усреднение и сближение элементного состава и свойств составляющих компонентов. Значение природы и распределение основных функциональных групп этих соединений приобретает в настоящее время все больший научный и практический интерес. Это связано с бурным развитием вторичных процессов в нефтепереработке и использованием составляющих нефти в качестве химического сырья, а также с возрастающей потребностью в высококипящих топливах и маслах. Одновременно возрастает роль физических и физико-химических методов, которые, не вызывая существенных изменений в структу- [c.55]

    Химические методы определения функциональных групп основаны на реакциях титрования и широко описаны в литературе. Из числа физических и физико-химических методов наиболее широко распространены для изучения функциональных групп полимеров методы молекулярной спектроскопии (инфракрасная и спектроскопия комбинационного рассеяния), а также метод ядерного магнитного резонанса. С помощью I этих методов можно обнаружить функциональные группы, содержащиеся в полимерной цепи (например, галогены, нитрильные, а также карбонильные и другие группы, которые образуются в полимере в результате реакций окисления). [c.40]

    В 1941 г. вышла в свет монография Анализ синтетических душистых веществ (авторы Л. Н. Петрова и О. В. Шварц) под редакцией проф. Л. Я. Брюсовой. В послевоенные годы неизмеримо увеличилось число работ по анализу органических соединений, основанному на химических методах определения функциональных групп и методах физического разделения газо-жидкостной и тонкослойной хроматографии. Вышло в свет много фундаментальных руководств, в которых рассматриваются такие вопросы, как элементарный анализ, методы функционального анализа, основанные на титровании, на полярографических и фотоколориметрических измерениях. [c.3]

    IV. ОТКРЫТИЕ ФУНКЦИОНАЛЬНЫХ ГРУПП ФИЗИЧЕСКИМИ МЕТОДАМИ [c.403]

    Содержатся справочные сведения по физико-химическим и физическим методам анализа потенциометрии, кондуктометрии, амперометрии и полярографическому анализу, спектроскопии, фотоколориметрическому, нефелометрическому и турбодиметрическому анализам, пламенной фотометрии, флюоресцентному анализу, рефрактометрии, хроматографии на бумаге и ионообменных смолах. Приведены схемы анализа сложных веществ природного происхождения и искусственно полученных веществ (резины, пластмасс, различных нефтепродуктов), методы определения функциональных групп органических соединений, сведения по техническому анализу металлов и сплавов и др. [c.384]

    В зависимости от профиля и объема времени, отводимого учебным планом, в некоторых вузах имеется малый и большой практикум, в других — лишь малый, иногда — лишь большой. Малый практикум дает первоначальное знакомство с органическими веществами, их свойствами и реакциями, проводимыми качественно особенно большое значение имеют реакции, характеризующие классы соединений по их функциональным группам, а также реакции на некоторые важнейшие представители. Основу большого практикума составляют синтезы органических веществ и их исследования, включая применение физических методов, что, естественно, дает более глубокое знакомство с органическими соединениями. [c.3]

    В функциональном анализе значительное место занимают физические и физико-химические методы [52, с. 450]. Из этих методов опять-таки стандартным методом является ИК-спектроскопия. Многие атомные группировки (функциональные группы) обладают полосами поглощения в определенной достаточно узкой части ИК-спектра. Это так называемые характеристические частоты , которым в ЯМР-спектре соответствуют химические сдвиги , а в масс-спектре пики, отвечающие определенным ионам. Кроме такой, прямой идентификации функциональных групп, спектроскопические методы дают возможность судить также о присутствии водородных связей, хотя и косвенным способом. Внутри- и межмолекулярные водородные связи можно различать с помощью ИК-спектроскопии, так как разбавление раствора не сказывается на внутримолекулярных водородных связях и, наоборот, приводит к уменьшению числа межмолекулярных связей. [c.313]


    В настоящей главе описаны наиболее часто применяемые качественные пробы на функциональные группы, приведены примеры получения производных, а также физические методы функционального анализа и определения строения органических веществ.  [c.249]

    Альтернативным к используемому в разделе III подходу, основанному па применении математического аппарата теории ветвящихся случайных процессов, является теоретико-полевое рассмотрение ансамблей разветвленных макромолекул [3]. Возможность использования методов теории ноля связана с тем, что производящий функционал распределения Гиббса вероятностей состояний таких статистических ансамблей может быть представлен в виде континуального интеграла по случайному полю, пропорциональному флуктуирующей плотности звеньев или химически реагирующих функциональных групп. Вычисление этого интеграла методом перевала при е О приводит к термодинамическим потенциалам теории среднего поля, а для расчета поправок к ним по малому параметру е необходимо учитывать флуктуации поля с помощью специальных методов теории возмущений применительно к функциональным интегралам. Для этого в разделе IV развита диаграммная техника, которая применена также к расчету парных корреляционных функций. Наиболее эффективен этот метод нри построении статистической теории разветвленных полимеров, учитывающей кроме химических, также физические (объемные) взаимодействия молекул. В таком варианте теория учитывает термодинамическое сродство полимера с растворителем и поэтому описывает фазовые переходы в процессе образования полимерных сеток. [c.147]

    Для исследования состава поверхностных слоев, определения функциональных групп на поверхности, межатомных и межмоле-кулярных связей широко используются традиционные оптические методы спектроскопия (инфракрасная, ультрафиолетовая, комбинационного рассеяния), рентгенография, электронография и др. Их применение для таких исследований отличается специфическими способами приготовления испытуемых образцов, поскольку информация должна поступать из очень тонкой области системы, тол-щиной порядка нескольких моноатомных или мономолекулярных слоев. Названные методы исследования достаточно подробно из лагаются в курсах физики и физической химии. [c.246]

    Масс-спектроскопический метод хорошо дополняет информацию, получаемую с помощью других физических методов. Так, например, УФ-спектр указывает на тип ароматической системы пли сопряженной поглощающей группы ИК-спектр позволяет обнаружить наличие многих функциональных групп спектр ЯМР дает в ряде случаев информацию об окружении этих групп. Детальная интерпретация масс-спектра часто позволяет локализировать эти функциональные группы в определенных местах молекулы и оценить характер их взаимной связи. Кроме того, по данным масс-спектра можно сделать вывод относительно размера и структуры боковых цепей прямое определение молекулярного веса дает значения с точностью до одной единицы массы. [c.231]

    Исследование процесса кристаллизации модифицированного полиизопрена (каучука СКИ-ЗМ) дилатометрическим методом [14, с. 109—127] показало, что введение даже небольшого количества полярных атомов и групп (до 1,5%) снижает скорость кристаллизации. В то же время модификация полиизопрена структурирующим агентом нитрозаном К вследствие возникновения слабых химической и физической сетки в определенных условиях способствует ускорению кристаллизации полиизопрена. Действительно, в дальнейшем при рентгенографическом изучении кристаллизации при растяжении наполненных смесей НК, СКИ-3 и СКИ-3, модифицированного различными функциональными группами, было показано [21], что сажевые смеси на основе каучука СКИ-3 с функциональными группами при растяжении на 300—400% обнаруживают кристаллические рефлексы, аналогичные наблюдаемым для натурального каучука, в то время как смеси на основе каучука СКИ-3 не обнаруживают кристаллических рефлексов при растяжении до 1000%. Температура плавления кристаллитов модифицированного каучука СКИ-ЗМ составляет 50—60 °С (в зависимости от метода модификации), т. е. ниже, чем у кристаллитов натурального каучука (65°С), вследствие большей дефектности. Это исследование ярко иллюстрирует роль кристаллизации в возникновении когезионной прочности. Имеется четкая связь степени кристаллизации и прочности ненаполненных сополимеров этилена и пропилена в зависимости от содержания пропилена [22]. [c.234]

    Во многих случаях существует связь между атомными группами и физическими свойствами вещества, поэтому функциональные группы могут быть качественно и количественно определены инструментальными физическими и физико-химическими методами. К ним отно- [c.46]

    Химические методы анализа, как известно, дают лишь эмпирическую формулу неорганического или органического соединения. Для определения функциональных групп, содержащихся в молекулах, необходимо привлечение дополнительных физических или физико-химиче- [c.77]

    Задачи качественного и во мнотих случаях количественного определения функциональных групп в настоящее время в большой степени решаются инструментальными физическими и физико-химическими методами. Однако при исследовании строения многофункциональных соединений, в тех случаях, когда спектральное исследование дает сложную картину (одни функциональные труппы нивелируют другие), приходится прибегать к количественному определению функциональных групп другими методами. В связи с этим в МГУ велись поиски новых спектрофотометрических. потенциометрических, газовохроматографических и химических методов определения спиртов, меркаптанов, аминов, гидразинов, гидразидов, альдегидов, сложных эфиров, ангидридов, галоидангид-ридов и ненасыщенных соединений. Например, в нашей лаборатории разработано несколько новых методов количественного анализа акрилонитрила [22—27]. Наиболее точным и удо бным из них является метод, основанный на реакции акрилонитрила с сульфитом натрия [c.450]

    В настоящее время мы являемся свидетелями интенсивного развития нового этапа исследований динамики белков. Отличительной чертой этого этапа является привлечение новейших методов (в первую очередь ЯМР, рентгеноструктурного анализа, динамических спектральных методов и физических меток) для получения детальной информации о подвижности конкретных функциональных групп в белках и сопоставления кинетических и динамических характеристик ферментативных процессов, а также использование теоретических расчетов. [c.555]

    Практически все методы переработки связаны с измельчением ТГИ, так как скорость физико-химических процессов зависит от удельной поверхности реагирующих твердых частичек вещества. В то же время измельчение высокомолекулярных веществ не является сугубо физическим процессом. При измельчении, например, угля разрушаются микромолекулы с образованием свободных радикалов, которые взаимодействуют между собой и с молекулами окружающей среды. Этот процесс называется механодеструкцией, его можно наблюдать ао изменению количества функциональных групп и образованию газообразны) продуктов. Если процесс измельчения осуществляется в среде, содержащей активный акцептор-кислород, то в угле увеличивается содержание функциональных групп ОН и СООН. В инертной среде содержание кислородсодержащих функциональных групп уменьшается за счет их отщепления с образованием газов СО и СО и воды. Как правило, при увеличении степени дисперсности углей повышается выход спирто-бензольных экстрактов (битумов). [c.125]

    Имеющиеся данные касаются в основном полностью ненасыщенных алкил- и арилзамещенных 1,2,4-триазинов и их производных с кислород-, азот-, серусодержащими функциональными группами в положениях -3 и -5, а также полифункционально замещенных 1,2,4-триазинов. Частично гидрированные несимметричные триазины с функциональными группами в положении -6 изучены недостаточно. Поэтому актуальными и перспективными представляются исследования по разработке методов синтеза и изучению физических, химических и биологических свойств гидрированных 1,2,4-триазинов с кислород-, азот-, серусодержащими функциональными группами в положении -6 с использованием в качестве исходных веществ промышленно доступных реагентов. [c.3]

    В последние годы появились различные подходы к автоматизации химического анализа в жидкой фазе (мокрого химического анализа). Однако одновременно с этим происходило развитие и физических методов (например, спектроскопии и хроматографии), поэтому применению методов химического анализа в жидкой фазе к определению функциональных групп уделялось мало внимания. Методы автоматического химического анализа активно применяли в тех случаях, когда неприменимы физические методы. Это в первую очередь относится к задачам контролирования химических процессов и клинического анализа, когда требуется часто анализировать большое число подобных образцов. Специфичность и дешевизна химических методов наряду с быстротой анализа и простотой оборудования обусловили широкое их применение в этих областях. В анализах сложных систем химические методы благодаря своей специфичности (избирательности) часто оказываются эффективнее физических методов. В этой главе рассматривается проблема автоматизации химических методов в жидкой фазе и обраш.ается особое внимание на методологию, имеющееся оборудование и практическое применение. [c.376]

    Еще одной областью, в которой требуется автоматизация, является контроль за химическими процессами. Сложность этих процессов привела к необходимости автоматизировать анализ химическими, а также физическими методами. Несколько авторов описали такие автоматические системы [30—33]. Лишь несколько функциональных групп определили в потоках веществ, [c.377]

    Найденные таким способом значения энергии активации хорошо согласуются с значениями U акт определбнными из данных других физических методов, в частности дилатометрического и динамического. Например, для полиэтилена в интервале температур 220—240 К получено [/акт=Ю5 кДж/моль, что совпадает с энергией активации рекомбинации радикалов. В этом случае явление РТЛ связано с диффузией и рекомбинацией ионов, находящихся на различных функциональных группах макромолекул. При более низких температурах возможно движение лишь небольших участков макромолекул, поэтому явление РТЛ обусловливается ориентационным разрущением межмолекулярных ловушек диффузией низкомолекулярных примесей, вступающих в реакцию с ионами и радикалами, а также диффузией подвижных метильных радикалов. Например, если электрон захвачен макро-радикалом i , то рекомбинация двух радикалов может сопровождаться освобождением заряда согласно схеме + [c.241]

    Для количественного определения содержания элементов, мономеров и функциональных групп широко применяют физико-химические и физические методы анализа. Однако и химические методы еще не утратили своего значения. В табл. 10.4 перечислены некоторые химические методы, используемые в производстве полимеров. Влажность может быть определена гравиметрическим методом — высушиванием образца полимера до постояной массы в сушильном шкафу или с помощью ИК-нагревателя. В третьей части книги приведены примеры химических методов аналитического контроля в производстве пластмасс (см. гл. 18). [c.225]

    При анализе закономерностей акцепторно-каталитической полиэтерификации и сополиэтерификации были широко использованы данные по реакционной способности диолов и дихлораигидридов дикарбоновых кислот, впервые полученные в результате систематического исследования указанных мономеров квантово-химическими [242, 243], физическими (потенциометрия [244, 245], ПМР [244, 245], ЯКР [246, 247]) и кинетическими [247-250] методами. Было установлено, что различие в активности первой и второй функциональных групп мономера определяется расстоянием между этими группами, строением мости-кового звена и строением атакующего реагента. В зависимости от указанных факторов активность второй функциональной группы мономера, после того как первая вступит в реакцию, может уменьшаться, оставаться неизменной или увеличиваться. [c.52]

    Структура (от латинского stra tura - строение, расположение, порядок) - совокупность устойчивых связей объекта, обеспечивающих его целостность и тождественность самому себе, т.е. сохранение основных свойств при различных внутренних и внешних изменениях. Специфика аналитических задач, обусловленная развитием синтеза и анализа соединений, в том числе и высокомолекулярных, определяется [12] высказьшанием А.П. Терентьева, сделанным в 1966 году Органический анализ призван решать весьма различные задачи, и первейшая из них - установление строения соединений. .. Следующий этап - выяснение формы, в которой данный элемент присутствует в соединении, т.е. [надо] найти его функциональные группы и их относительное содержание в молекуле. Эти знания, однако, также могут оказаться недостаточными, и поэтому требуется выяснить относительное положение различных функциональных групп. Иначе говоря, исследователь химического строения должен быть грамотным и изощренным аналитиком, владеющим всей совокупностью химических и физических методов исследования . [c.15]

    Функциональный анализ — совокупность физических и химических методов анализа, применяя которые можно качественно и количественно определять в органических соединениях реакцнонноснособные группы атомов (или отдельные атомы), так называемые функциональные группы. Известно около 100 функциональных групп. Напр. 1) Ф. г,, содержащие кислород гидроксильная (гидроксо) —ОН, [c.147]

    Нельзя не отметить, что, изучая строение неизвестного соединения, исследователь и ныне в сжатом виде, как бы вновь пробегает пройденные историей ступени познания. Он уста- навливает индивидуальный характер вещества, что невозможно без исследования его свойств (температур кипения и плавления, растворимости, хроматографических характеристик, цветных, а иногда и иммунологических реакций). Затем определяется элементарный состав соединения. На этой основе развертываются работы по установлению строения молекулы физическими и химическими методами определяются отдельные функциональные группы и радикалы. На этой стадии соединение нередко изображает- [c.12]

    Высокомолекулярная основа ионообменных смол, так называемая матрица ионита , может существенно различаться не только по химической, на и по физической структуре в зависимости от метода синтеза. Трсхмерпая полимеризация или поликопдепсация приводит к получению непористых смол. В такие смолы ионы диффундируют лишь по системе молекулярных промежутков между связанными в объемную сетку цепеобразными остатками мономеров, образовавших полимер. Иопиты, н трехмерггом полимере которых функциональные ионогенные группы размещены неравномерно, получили название гелевых . Гелевыми участками смолы при этом называют области с наибольшей концентрацией ионизированных функциональных групп. Микроучастки же смолы, практически лишеншле ионообменных групп, называют межгелевыми. [c.206]

    Очистку выделенного вещества следует проводить до тех пор, пока его состав не станет постоянным. В прошлом постоянство состава полисахаридов определяли с помощью физических и химических методов, таких, как определение функциональных групп, оптического вращения н углеводного состава (после кнслотиого гидролиза). Позднее для определения степени чистоты исследуемого образца стали применять также ультрацентрифугнрование, хроматографическое разделение. Лучше всего определять гомогенность полисахарида двумя и более методами. [c.217]

    Молекулярная формула Часто знание молекулярной формулы и природы и результаты присутствующих в соединении функциональных качественных реакций групп оказывается достаточным для установления часто П0ИВ0.7ЯЮТ его структуры. Кроме того, существуют различные полностью установить физические методы установления строения орга-гтруктуру соединения нических веществ. [c.741]

    Наличие в макромолекуле ГШС функциональных групп делает возможным применение физических и химических методов для его модификации. Жестким гигиеническим требованиям, предъявляемым к модифицирующим добавкам, отвечают, например, полисахариды (хитозан). Благодаря наличию реакционноспособных ipynn, они рассматриваются в качесгве наиболее перспективных модификаторов. [c.163]

    Для характеристики отдельных функциональных групп пластификаторов или соединений в целом используют такие физические методы, как ИК-спектроскопия, ядерный магнитный резонанс, газожидкостная хроматография, спектрофотометрия, [11, 12, 44, 92]. Кроме того, применяются и традиционные химические методы анализа содержания гидроксильных, групп, о]<сирановых групп, непредельных соединений, альдегидных групп и т. п. [15, 26,27]. [c.121]

    Одним из таких физических методов является спектрофотометрия в ультрафиолетовой части спектра. Область применения ультрафиолетовой спектроскопии ограничена в основном ароматическими углеводородами и системами с двойными связями, сопряженными между собой или с какими-нибудь функциональными группами. В промышленности синтетического каучука метод ультрафиолетовой спектроскопии находит применение для анализа самых различных продуктов производства определение примесей в мономерах и различных полупродуктах, изучение состава ряда полимеров, определение содержания различных ингредиентов в каучуках, контроль некоторых процессов сополимеризации и многое другое. В ряде случаев метод может быть применен для идентификации некоторых соединений и расшифровки состава образцов синтетических каучуков. Недостатками метода, ограничиваюш.ими в некоторых случаях [c.3]

    Наиболее трудной проблемой, с которой постоянно приходится сталкиваться в органической химии, является выделение исследуемых соединений в возможно более чистом виде и определение их молекулярной структуры. Решение этой проблемы является, как правило, необходимым этапом на пути к конечной и главной цели химика-органика — к синтезу веществ с заданной структурой и заданными свойствами. Задача оказывается особенно трудной в тех случаях (весьма характерных для современной органической химии), когда исследуемые вещества обладают сложным строением и незначительные детали структуры их молекул, включая взаимное пространственное расположение функциональных групп, оказывают сзоцественное, а иногда и определяющее влияние на свойства этих веществ. Успех исследователя зависит при этом от того, насколько подходящими окажутся выбранные им методы выделения, идентификации и установления химической структуры, а также насколько умело он использует имеющиеся в его распоряжении физические приборы. [c.13]

    Используя хроматографический носитель, модифицированный (5), Клемм смог частично разделить некоторые ароматические эфиры и углеводороды. Способность (5) разделять хиральные ароматические углеводороды, не содержащие каких-либо других функциональных групп, представляет большой интерес. Гил-Авом и сотр. [136, 137], а также Винбергом и сотр. [138, 139], а также рядом других исследователей опубликованы сообщения о разделении гели-ценов методом ЖХ на силикагеле с ковалентно-связанным (5) или на силикагеле или оксиде алюминия с физически адсорбированным (5). Опубликованы также сообщения о проведенных разделениях ряда энантиомеров, в основу которых положен этот же принцип [140—142]. [c.147]


Смотреть страницы где упоминается термин Функциональные группы физические методы: [c.477]    [c.89]    [c.9]    [c.442]    [c.806]    [c.291]    [c.55]    [c.13]    [c.206]    [c.16]   
Количественный анализ органических соединений (1961) -- [ c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Методы физические

Функциональные группы



© 2024 chem21.info Реклама на сайте