Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды ароматические в водных растворах

    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]


    На неполярных адсорбентах из сильно полярных элюентов, например, водно-спиртовых смесей, сильнее адсорбируются молекулы, содержащие неполярные углеводородные цепи, циклы или группы (см. рис. 14.4 и 14.15). В основном эти молекулы удерживаются на неполярной (гидрофобной) поверхности за счет адсорбции их неполярных частей, т. е. за счет неспецифического межмолекулярного взаимодействия с адсорбентом, как это было показано в разделе 16.5 при адсорбции ароматических углеводородов из водных растворов на гидроксилированной поверхности кремнезема. Полярные же группы молекул дозируемого вещества при адсорбции на неполярном адсорбенте из полярного элюента уменьшают удерживание, так как их межмолекулярное взаимодействие с полярными грушпами молекул элюента, влияя на их ориентацию, ослабляет межмолекулярное взаимодействие молекул дозируемого вещества с адсорбентом и облегчает их возвращение в объем элюента. Таким образом, в этом случае удерживание в основном определяется, во-первых, неспецифическим межмолекулярным взаимодействием молекул дозируемого вещества с адсорбентом и, во-вторых, специфическим межмолекулярным взаимодействием этих молекул с элюентом, причем последнее уменьшает удерживание. Этот молекулярный механизм удерживания надо иметь ввиду, так как распространенный в литературе по жидкостной хроматографии термин обращеннофазная хроматография не передает существа дела. Действительно, из лекции 16 следует, что органические вещества, во-первых, удерживаются из водных растворов и на полярном адсорбенте (гидроксилированной поверхности силикагеля) и, во-вторых, порядок выхода органических веществ может быть изменен при изменении состава элюента как на полярном, так и неполярном адсорбентах. [c.307]

    Пригодность метода проверена на хорошо изученных примерах образования комплексов солей серебра с олефинами и ароматическими углеводородами в водных растворах. В табл. 5.4 дается сравнение полученных рассматриваемым методом значений констант устойчивости серебряных комплексов четырех простейших олефинов и двух ароматических углеводородов с литературными данными. Сопоставление этих величин показывает неплохое совпадение с результатами, полученными как статическим, так и динамическим методами. Несколько большее расхождение с данными динамического метода у бутиленов можно объяснить низкой точностью динамического определения малых коэффициентов распределения олефинов в летучем растворителе. [c.253]


    За последние годы появились новые способы получения ТФК из л-толуилового альдегида. Их отличительная особенность — использование в качестве реакционной среды воды, а в качестве катализатора — соединений брома. Несмотря на то что процессы окисления углеводородов в водных растворах соединений брома известны, применительно к кислородсодержащим ароматическим углеводородам, которы м, в частности, является л-толуиловый альдегид, они имеют некоторые специфические особенности и в ряде случаев могут использоваться для получения из л-толуилового альдегида ТФК высокой степени чистоты. [c.130]

    Термохимический способ. В подогретую нефть вводят 0,5—2,0°/о различных химических реагентов (деэмульгаторов), например нейтрализованный черный контакт (НЧК), представляющий собой водный раствор кальциевых или натриевых солей сульфокислот, получаемых из отбросных кислых гудронов. К настоящему времени синтезировано большое количество поверхностно-активных веществ (ПАВ), используемых в качестве деэмульгаторов нефтяных эмульсий. По внешнему виду это густые жидкости, мазеобразные или твердые вещества. Деэмульгаторы растворяют в широких фракциях (160—240 °С 170—270 °С) ароматических углеводородов или в метиловом спирте и в виде 40—70%-ных растворов поставляют потребителям. [c.13]

    Динамика адсорбции смеси четырех ароматических углеводородов из водного раствора при фильтровании его через слой активного угля была исследована экспериментально [147] и эти данные представлены в табл. 7.1, Для определения парциальных коэффициентов защитного действия адсорбента по отношению к каждому компоненту смеси а следовательно, и скорости перемещения фронта адсорбции вдоль слоя адсорбента, необходимо знать содержание всех компонентов, равновесные с динамической удельной адсорбцией компонента, а эти величины в слое отличаются от содержания в исходной смеси вследствие различий в избирательности адсорбции. [c.224]

    Другой метод выделения ацетилена [61] включает абсорбцию ацетилена из газа, уже очищенного от СО2 и ароматических углеводородов, 30% водным раствором аммиака под давлением 12 ат при —50° С. Скорость подачи раствора 10—12 жг/л газа. Десорбция ацетилена из раствора проводится при давлении [c.426]

    Сырьем для риформинга является фракция, содержащая углеводороды легче пентана. Выходящий из реактора рексформинга продукт имеет октановое число около 95 единиц (с добавкой О,Ъ мл/л ТЭС). Риформат поступает в экстракционную колонну, куда противотоком к нему подается водный раствор ди-этиленгликоля. Ароматические углеводороды вместе с низко-кииящими парафинами переходят в раствор. Высококипящие парафины отбираются сверху экстракционной колонны. Смесь гликоля и рексформата поступает на разделение в отнарную ко- [c.154]

    При исследовании растворимости ароматических углеводородов в водном растворе нитрата серебра были получены аналогичные результаты [3]. Рас- [c.301]

    Чистый метилэтилкетон из содержащей его фракции можно выделить добавлением к фракции м-гексапа, дающего с метилэтилкетоном азеотропную смесь (см. стр. 108, где метилэтилкетон используется в качестве компонента для образования азеотронной смеси с парафиновыми углеводородами в целях выделения последних из смеси с ароматическими). Отделяющаяся в качестве головного продукта азеотропная смесь метилэтилкетона и w-гексана разделяется затем при помощи воды, в которой метилэтилкетон растворяется. Из водного раствора метилэтилкетон получают в виде азеотропной смеси с водой, из которой затем воду выделяют в форме азеотронной смеси с нентаном. [c.152]

    В качестве экстрагента ароматических углеводородов из смеси их с парафиновыми углеводородами до недавнего времени применяли 93%-ный водный раствор диэтиленгликоля. Для экстрагирования ароматических углеводородов с различной молекулярной массой требуется соответствующее массовое соотношение экстрагент сырье, равное при использовании диэтиленгликоля (8—15) 1. Чем больше молекулярная масса ароматических углеводородов, содержащихся в катализате, тем выше это соотношение. Замена диэтиленгликоля более эффективным триэтиленгликолем позволяет снизить соотношение экстрагент сырье до (7—10) 1 и, следовательно, обеспечить значительную экономию пара, особенно при экстрагировании ксилолов. При переходе на триэтиленгликоль основное технологическое оборудование блока экстракции и вторичной ректификации то же, 5 с сокращением количества циркулирующего растворителя появляются резервные мощности оборудования, позволяющие увеличить производительность блока. [c.168]

    Можно определить также общее количество нафталинов независимо от присутствия тех или иных индивидуальных нафталинов. Другие алкил-нафталины и полиядерные ароматические углеводороды должны быть до анализа удалены дистилляцией, так как их полосы поглощения накладываются на область поглощения определяемых нафталинов. Углеводороды с сопряженными связями (как диолефины, стиролы и индены) также мешают при анализе, по могут быть удалены водным раствором нитрата илн ацетата ртути или щелочным раствором перманганата. [c.285]


    Процесс экстракции ароматических углеводородов водными растворами гли-колей. (Ред.). [c.186]

    Каталитическая активность ионов меди и железа, как впервые было установлено М. А. Проскурниным и Е. В. Борелко [208], проявляется также при радиационном окислении ароматических углеводородов в водном растворе. Выход фенола в присутствий сульфатов железа и меди при 150—200°С, давлении кислорода 30 кгс/см2 и у Облучении Со достигает соответственно 2,5% и 3,5% в расчете на исходный бензол [187—193] состав побочных продуктов [191] примерно такой же, как при нерадиационном окислении. При окислении в подобных условиях толуола [205] (1 мл толуола на 15 мл водного раствора солей железа или меди, 30 кгс/см2 Ог, 100—200 °С) образуются бензальдегид, бензойная кислота, бензиловый спирт и крезолы, причем количецгво продуктов окисления СНз-группы примерно в 10—15 раз превышает количество крезолов. Окисление ароматических углеводородов под действием ультразвуковых волн, УФ-света, нейтронов, а-ча-стиц, у- и рентгеновского облучения может протекать и в отсутствие катализаторов [173, 176], однако выходы фенолов при этом незначительны. [c.289]

    П. А. Демченко [76—77] установил, что с yвeличeниe длины молекулы углеводорода его способность к солюбилизации в растворах ПАВ уменьшается. Ароматические углеводороды по солюбилизирующей способности в растворах мыл предельных жирных кислот располагаются в ряд бензол > толуол > ксилол. Можно предположить, что строение углеводорода влияет как на диффузию молекул к мицеллам, так и на скорость включения солюбилизата в структуру мицелл. 3. Н. Маркина и сотрудники [69] показали, например, что солюбилизация углеводородов в водных растворах олеата натрия определяется строением молекул и растворимостью в воде солюбилизата, через которую осуществляется диффузия углеводорода к мицеллам. [c.21]

    Сравнительно мало попыток было предпринято для сравнения основностей ароматических углеводородов по отношению к минеральным кислотам. Килпатрик и Гайман [204] сравнивали спектральные изменения бензола, мезитилена и гексаметилбензола в некоторых сильных кислотах по мере изменения кислотности растворителя, которую они считали подобной, но не идентичной функции Но- Гексаметилбензол обладает достаточно сильными основными свойствами, чтобы протонироваться концентрированными растворами серной кислоты, и несколько групп исследователей [7, 85, 204] дают сходные точки его ионизации наполовину. Наиболее систематическое исследование ароматических углеводородов в водном растворе кислоты провели Ханда и Кобаяши [175], которые опубликовали значения р/Са (очевидно, по шкале Но) для большой группы полиядерных соединений (приводятся в таблицах в конце обзора). Однако эти результаты вызывают некоторое сомнение, поскольку для случая гексаметилбензола они не совпадают с данными других авторов. Следует отметить, однако, что ряд значений основности для ароматических кетонов, приведенных в той же работе, хорошо совпадает с литературными данными. Можно было бы ожидать, что ароматические углеводороды зависят от функции кислотности Яд/, а не Но- Чтобы избежать путаницы в этом вопросе, мы приводим значения основности в виде процентного содержания серной кислоты, необходимого для ионизации наполовину. [c.226]

    Окислительному хлорированию в системе H I—Н2О2 могут быть подвергнуты олефиновые углеводороды Сг—Се и ароматические углеводороды. ЭффективнЫхМ катализатором окислительного хлорирования алкилароматическнх углеводородов являются водные растворы триоксида хрома СгОз. [c.47]

    Жидкость т. кип. 49,5—51 °С (1.3 Па) плотность 1055 кг/м Растворяется в кетонах, спиртах, алифатических, ароматических и хлорированных углеводородах, в водных растворах щелочей слабо растворяется в воде. Горюч т. вспышки 80 °С. Взрывоопасен. Не чу1вствителен к удару. Токсичен ПДК 1 мг/м . [c.194]

    Соли сульфонилмочевин с диэтиламином представляют собой кристаллические вещества, легко растворимые в воде, ацетоне, хлороформе, спиртах и ароматических углеводородах и не растворимые в алифатических углеводородах. Их водные растворы имеют нейтральную реакцию. Обработкой последних соляной кислотой выделены свободные сульфонилмочевины (соединения I — II). [c.35]

    В работе [26] указанное устройство применяли для определения микросодержания парафиновых и ароматических углеводородов в водных растворах. В работе [27] статический метод АРП был использован для определений К.2 ароматических углеводородов в уксусной кислоте и воде, кетонов и сернистых соединений в воде. [c.163]

    Карбоний ионный механизм. Под влиянием серной кислоты олефины подвергаются различным реакциям гидратации, образованию сложных эфиров, нолиморизации и конденсации с ароматическими углеводородами. Наиболее просто механизм различных реакций можно понять с точки зрения нродстаплений об образовании в качестве промежуточного продукта карбопнй-иопа [1381. Так, нанример, в разбавленных растворах кислот третичные олофины подвергаются гидратации в третичные спирты [78, 196, 204, 205 . С бо. гое концентрированными кислотами образуется сложный эфир сорной кислоты [170]. В разбавленных водных растворах кислот вода является главным нуклеофильным агентом, в то время как в 67%-ной серной кислоте концентрация свободной воды ничтожно мала и бисульфат-ион присутствует в очень большой концентрации (ЬХХУП)  [c.435]

    Для выделения ацетилена из газов частичного сжигания (содержащих СО-2) в последние годы стали использовать водные растворы димет)1лформамида. Углекислый газ отделяют абсорбцией щелочами, высшие углеводороды (ацетиленовые и ароматические) —метанолом (при температуре от —2 до —5 °С), а С2Н2 — жидким аммиаком (при 70 С и атмосферном давлении). В одном объеме жидкого [c.117]

    Деароматизированный растворитель собирают с низа колонки в градуированные пробирки первую порцию в количестве 2 мл,, последующие по 0,5 мл. В отобранных порциях растворителя качественно определяют ароматические углеводороды по формали-товой реакции. Для этого берут 1—2 капли деароматизированно-го растворителя, добавляют к нему 1 мл серной кислоты и 2—3 капли 40%-ного водного раствора формалина. Образование темного кольца на границе раздела серная кислота — испытуемый, раствор указывает на наличие в пробе ароматических углеводородов. [c.499]

    Компания Аврора газолин в 1955 г. построила установку рексформинга [180]. Установка сооружена на базе установки платформинга. К ранее действующей установке платформинга была добавлена экстракционная секция юдекс для выделения из продуктов риформинга ароматических углеводородов при помощи селективной экстракции водным раствором диэтилен-гликоля. [c.154]

    Другой способ определения полноты очистки основан на допущении такого рода марганцево-кислый калий в олиртовом растворе окисляет прежде всего непредельные соединения, остающиеся в исследуемом углеводороде, а затем уже самые ароматические углеводороды (это так называемая хамелеоновая проба). Методигса состоит в том, что к спиртовому раствору углеводорода (2 1) прибавляется i капля водного раствора KM11.O4. При этом наблюдается продолжительность сохранения розовой окраски. Для хорошо очищенных продуктов она составляет 2—3 мин. [c.410]

    Олефины и ароматические углеводороды являются слабыми основаниями, обладающими некоторым сродством к протону. Большая часть углеводородов могут действовать как слабые или очень слабые кислоты и вызывать появление протонов путем гетерополяркого разрыва связи С—Н, но эти свойства проявляются только в присутствии очень сильных кислот или оснований, используемых в качестве катализаторов, а в разбавленных водных растворах не обнаруживаются. [c.39]

    Экстракция ароматических углеводородов из дизельных масел производится также и фурфуролом [84] при температуре выше температуры окружающей среды (60—80 °С). При промывании фурфуролом смесей, полученных путем крекинга газовых масел, кроме ароматических углеводородов, удаляются также металлические конгломераты и соединения серы [73, 76]. Третьим растворителем, применяющимся в промышленном масштабе для вымывания ароматических углеводородов из легких продуктов пиролиза, является водный раствор диэтиленгликоля. Эта экстракция, известная под названием метод Удекс [70, 71, 73, 76, 94, 951, впервые была применена Б 1950 г. В качестве новых растворителей был испытан ряд различных жидкостей, в том числе -цианэтиловый эфир [88], азеотроп-ная смесь углеводородов с цианистым метилом, комплекс фтористого бора с кислородными соединениями, фтористый водород [100] и т. д. Для выделения из продуктов пиролиза нефти толуола высокой чистоты пригодна вода [67]. Для удаления ароматических углеводородов из керосиновой фракции пригоден раствор 75—99,9% метанола [851 и жидкий аммиак [87]. [c.402]

    Инд и й, содержащийся в количествах, которые называют следами, экстрагируется из водных НВг растворов метилизобутилкетоном [5201 в виде ТпВГо. Хлориды индия [520, 5211 из водных растворов H I лучше всего экстрагируются циклогексаноном, а затем метилизопропилкетоном, метилизобутилкетоном, этилацетатом, этиловым эфиром и др. Хлорпроизводные углеводородов (хлорбензол) п ароматические углеводороды (бензол, толуол, ксилол и др.) оказались плохими растворителями. [c.458]

    Разработан метод получения нормальных парафиновых углеводородов высокой чистоты при депарафинизации нефтепродуктов спирто-водным раствором карба мида. Высокая четкость гравитационного разделения фаз в разработанном процессе обеспечивает получение из такого сырья, как дизельное топливо ромашкинской нефти, парафинов с содержанием комплексообразующих углеводородов 93—93,5%, в том числе н-алканов (по хроматографическому анализу) 98%, ароматических — около 1%. При этом расход углеводородного растворителя на промывку суспензии комплекса составляет 75—100% (масс.) на исходное топливо, что в несколько раз меньше такового в других схемах карбамидной депарафинизации с рааделением фаз на фильтрах или центрифугах. В работах [32, 89] в том или ином варианте предлагается применять прессование (на лентах, между которыми заключен комплекс-сырец на конических роликах, расположенных ради- [c.247]

    Одним из источников получения маслорастворнмых сульфонатов являются побочные продукты, образующиеся при глубокой очистке минеральных масел олеумом. Сульфокислоты, полученные при сульфировании этих высококипящих нефтяных дистиллятов, являются сложными смесями производных ароматических и нафтеновых углеводородов и содержат по меньшей мере одну сульфо-группу, присоединенную к атому углерода. Из продуктов сульфирования сульфокислоты могут быть выделены при обработке водным раствором уксусной кислоты, спирта или эфира, фенола и др. Для получения чистых маслорастворимых сульфонатов нейтрализованные сульфокислоты обычно подвергают экстракции водным раствором спирта [15, с. 69]. [c.69]

    Остановка Л-35-6 (ДЭГ) предназначена для получения индивидуальных ароматических углеводородов методом каталитического риформинга с иоследуюи1ей жидкофазион экстракцией их водным раствором диэтиленгликоля (ДЭГа). [c.78]

    Блок экстракции ароматических углеводородов. Сырье (стабильный катализат с блока риформинга) после нагревания последовательно в теплообменнике Т-101 теплотой обратного потока рафината и- в подогревателе Т-108 водяным паром до температуры 150 С направляется в экстрак-цноииую колонну К-101. В верхнюю часть экстракционной ко-лонт,1 К-101 подается 93% водный раствор ДЭГа с температурой 150 "С. [c.103]

    В экстракционной колонне К-6 прн давлении 0,9 МПа и температуре 160 °С осуществляется избирательная противоточная жидкофазная экстракция ароматических углеводородов из смеси их с парафиновыми углеводородами водным раствором диэтиленгликоля или водным раствором триэтилеигликоля. При этом в результате многократного смешения сырья с ДЭГом ароматические углеводороды поглощаются им и выводятся с низа колонны рафинат выводится сверху. [c.112]

    При разрушении эмульсий западно-сибирских нефтей в случае применения разбавленных растворов водо- и нефтерастворнмых деэмульгаторов эффективность их в 1,5—3 раза выше, чем при использовании их в неразбавленном виде [ 110]. Разбавленные (0,5-2,0%-ные) водные растворы водорастворимых деэмульгаторов действуют эффективнее, чем их растворы в нефти. Для нефтерастворимых деэмульгаторов наибольшую эффективность проявляют растворы в ароматических углеводородах, несколько уступают им нефтяные растворы, что обусловлено неполной растворимостью деэмульгатора в нефти и частичной адсорбцией его на поверхности эмульгаторов. [c.133]

    В зависимости от типа дезмульгатора применяют 1-2%-ные водные растворы в ароматических углеводородах или ниэкомолекулярных спиртах, а также 65-50%-ные растворы в указанных растворителях или их смесях. К навеске образца деэмульгатора 1 г, взвешенного с точностью до 0,0001 г, приливают 99 г выбранного растворителя смесь перемешивают до полного растворения образца. [c.150]

    Для изучения влияния на эффективность блоксополимеров порядка присоединения к исходному веществу окисей алкиленов проведен синтез блоксополимеров присоединением к пирокатехину окисей этилена и пропилена в обратном порядке. Сначале к нему присоединяли 20—53 групп окиси этилена, затем к полученным образцам — окись пропилена (40—70% от конечного продукта). Установлено, что блоксополимеры типа ОЭ/ОП менее эффективны, чем типа ОП/ОЭ. Водные растворы блоксополимеров типа ОЭ/ОП менее эффективны, чем растворы пх в ароматических углеводородах. Однако даже в случае применения в ароматических углеводородах они менее эффективны, чем водные растворы блоксополимеров пирокатехина типа ОП/ОЭ. Так, для разрушения эмульсии ромашкинской нефти требуется 20 г т блоксополимера пирокатехина тина ОП/ОЭ молекулярного веса 6020, а блоксополимера типа ОЭ/ОП молекулярного веса 5750 — 50 г т. [c.133]

    Значительно больше диссольванов и бескола требуется, для разрушения эмульсии тяжелой арланской нефти (100—150 г/т). Ири этом водные растворы диссольванов разрушают эмульсии арланской нефти хуже, чем их растворы в ароматических углеводородах. В отношении эмульсии ромашкинской нефти такого различия не наблюдается. [c.166]


Смотреть страницы где упоминается термин Углеводороды ароматические в водных растворах: [c.208]    [c.240]    [c.290]    [c.112]    [c.373]    [c.464]    [c.141]    [c.382]    [c.92]    [c.208]    [c.221]    [c.89]    [c.95]    [c.29]   
Радиационная химия органических соединений (1963) -- [ c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Углеводороды водные растворы



© 2025 chem21.info Реклама на сайте