Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота атомарная

    Атомарная энтальпия (теплота) образования. Тепловой эффект реакции образования данного вещества из атомов называется атомарной теплотой (энтальпией) образования. Она равна теплоте (энтальпии) атомизации (с обратным знаком), т. е. тепловому эффекту разложения данного вещества на свободные атомы. Для процесса, записываемого в общем виде [c.166]

    Исходя из теплот диссоциации Н2 и О2 (498 кДж/моль) и теплоты образования Н2О (ж) вычислить атомарную теплоту образования воды и среднюю энергию связи Н—О. [c.76]


    Энергии диссоциации молекул N5 и Н2 соответственно равны 9456 и 436 кДж/моль. Вычислить атомарную теплоту образования аммиака и среднюю энергию связи М—Н. [c.77]

    Указать различия в свойствах атомарного и молекулярного водорода. Одинаковы ли теплоты сгорания атомарного и молекулярного водорода Ответ обосновать. [c.220]

    Энергии диссоциации Н2, I2 и теплота образования НС1 соответственно составляют 436, 243 и —92 кДж/моль. Вычислить атомарную теплоту образования H I и энергию связи H I. [c.75]

    Было предпринято много попыток установить связь между перенапряжением водорода на данном металле и каким-либо другим его физическим свойством каталитической активностью по отношению к реакции рекомбинации свободных атомов водорода, теплотой плавления металла или теплотой его испарения, работой выхода электрона, минимальным межатомным расстоянием в решетке кристалла, коэффициентом сжимаемости и т. п. В результате исследований было отмечено, например, что чем выше температура плавления, тем ниже перенапряжение водорода однако это наблюдение нельзя рассматривать даже как приближенное правило. Бонгоффер (1924) нашел, что чем выше каталитическая активность металла по отношению к реакции рекомбинации атомарного водорода, тем ниже на нем перенапряжение водорода  [c.399]

    Теплоты атомарной и молекулярной хемосорбции водорода на никеле, железе, хроме и платине. [c.169]

    Энергия связи. Для расчета энергии связи Е надо знать теплоту образования газообразного соединения из газообразных атомов. Эта вели-М чина называется атомарной Изолир. атомы теплотой образования АН. --Для ее определения нужно [c.21]

Рис. 7. Энтальпийная диаграмма для расчета атомарной теплоты образования Н2О Рис. 7. <a href="/info/20747">Энтальпийная диаграмма</a> для расчета атомарной теплоты образования Н2О
    Величина перенапряжения водорода на разных металлах была также связана Н. И. Кобозевым и Н. И. Некрасовым с адсорбционной способностью металлов по отношению к атомарному водороду, которая характеризуется величиной работы Ладе или теплоты адсорбции [c.258]

    К сожалению, для очень важной категории реакций — реакций образования из элементов (из простых веществ или свободных атомов) — применение описанных закономерностей при высоких температурах часто бывает существенно ограниченно. Расчет параметров реакций образования из простых веществ и определение их температурных зависимостей в широкой области температур большей частью сильно осложняются вследствие фазовых переходов, которые претерпевают простые вещества (полиморфные превращения, плавление, испарение), и частичной диссоциации их на атомы при высоких температурах. Поэтому целесообразнее рассматривать атомарные теплоты образования (или теплоты атомизации), атомарные энтропии образования (или энтропии атомизации) и другие параметры реакций образования вещества из свободных атомов. В настоящее время расчет этих величин не представляет затруднений, так как почти для всех элементов имеются дан-ные о значениях термодинамических функций их в состоянии одноатомного газа при разных температурах до 3000 К, и для некоторых элементов до 6000, 8000 и 20 ООО К- [c.183]


    Соотношения (И, 8) служат также для определения атомарных теплот образования и атомарных энтропий образования по соответствующим обычным параметрам реакций образования из простых веществ. Раньше подобные определения были затруднены отсутствием необходимых данных о термодинамических параметрах процессов атомизации простых веществ. В настоящее же время такие данные имеются почти для всех элементов (как для 298,15 К, так и для более высоких температур). [c.57]

    Для параметров реакций образования из атомов в 8 были приняты следующие термины и обозначения атомарная теплота образования (ДЯ/), атомарная энтропия образования (Д5/) и т. д. (с исключением индекса ° — стандартного состояния веществ и, когда можно, индекса /), а для параметров процессов атомизации соответственно теплота атомизации (ДЯа = —ДЯ ), энтропия атомизации (Л5а = — Д5 ), lg Ка — — и т. д. [c.160]

    Для веществ в кристаллическом состоянии также описаны зависимости атомарных теплот образования некоторых групп соединений от их состава. Так, Ю. М. Голутвин нашел, что атомарные теплоты образования ряда окислов данного элемента (отнесенные к 1 г-экв) для кристаллического состояния этих соединений находятся в линейной зависимости от логарифма валентности катиона. На рис. IV, 9 показаны соотношения, наблюдаемые для окислов [c.162]

    Влияние температуры на атомарные теплоты образования вполне аналогично описанному для АН других реакций (см. 22— 24 и 26). Для газов метод однотипных реакций может применяться и в форме метода разностей, и в форме метода отношений. В табл. IV, 16 приведены АН1 окислов магния, кальция, стронция и бария н соотношения между ними. Как и для других параметров, постоянство Хн и ан лучше всего выдерживается в паре СаО—SrO, [c.162]

    Вместо атомарной теплоты образования (т. е. теплоты образования из свободных атомов элементов ), ДЯ , применявшейся в прежних работах Фаянса в настоящее время в органической химии обычно рассматривают теплоту атомизации (т. е. теплоту разложения на свободные атомы ДЯа = — ДЯ)". Как было указано в 8 и 27, эти величины связываются с теплотами образования из простых веществ (из элементов) через теплоты атомизации элементов аи1, к), которые представляют собой изменение энтальпии при переходе 1 г-атома элемента К из стандартного состояния простого вещества в стандартное состояние одноатомнОго газа при данной температуре. [c.211]

    Рассматриваемый метод дает возможность рассчитывать теплоту образования (ДЯ , 293) данного алкана в газообразном состоянии из простых веществ, атомарную теплоту образования (дя .гэв) теплоту сгорания (ДЯс, 2Э8)и с несколько большей погрешностью Д0° , 298. в табл. VI, 20 приведены инкременты Pi,j, относящиеся к различным видам связи С—С в алканах, для расчетов АЯ , 293 дя , 298, (для газообразного и для жидкого состояний) [c.229]

    Соединения без водорода не различаются по теплотам сгорания. Энтальпия связи в соединении определяется для процесса, в котором исходное соединение в газовой фазе разлагается на исходные вещества АВ=А+В). Если соединение полностью разрушается до атомов, входящих в молекулу, то теплота называется энтальпией атомизации соединения. При возгонке твердого тела до атомарного газообразного состояния затрачивается энтальпия атомизации. Для углерода энтальпия атомизации равна 716,68 кДж/моль. [c.66]

    Было показано, что обратимая адсорбция водорода на металлах представляет собой молекулярную хемосорбцию, причем молекула хемосорбированного водорода является положительным концом диполя Ме — Нг (условно Ме — На ). Адсорбция водорода при —195 °С протекает крайне быстро и сопровождается распадом его молекул на атомы. Однако уже при этой температуре происходит рекомбинация хемосорбированных атомов водорода, и на части поверхностных атомов металла, свободной от атомарного водорода, происходит обратимая равновесная хемосорбция его молекул. Взаимодействие между электронами металла и адсорбированным водородом сопровождается поглощением теплоты [30 . [c.19]

    Хемосорбция начинается при довольно низкой температуре. Например, хемосорбция кислорода на графите и алмазе начинается при температурах выше — 70 К и достаточно интенсивно иДет при комнатной температуре. Сорбция водорода на атомарно-чис-той поверхности графита достигает заметной величины при 300 К и еще более значительной при 650 К. Теплота сорбции водорода на алмазе и графите составляет 58 и 45 ккал/моль соответственно. Сорбция СО, СОз и СН4 на угле начинается около 700 К- [c.197]

    В. Ф. Киселев (1961 г.) получил надежные опытные доказательства и дал теоретическое обоснование строгого подчинения процесса хемосорбции закономерности стехиометрии. Совместно с сотрудниками им было установлено, что величины и теплоты сорбции на графите обусловлены количеством и характером межатомных связей, возникающих между атомами сорбата и атомами поверхности сорбента. Он отмечает, что хемосорбция на атомарно чистой поверхности приводит к насыщению разорванных на поверхности химических связей. Происходит восстановление нормальной гибридизации орбиталей поверхностных атомов благодаря их связи с хемосорбированными атомами. Исследование поверхности полупроводников со структурой алмаза, а именно монокристаллов германия и кремния методом дифракции медленных электронов, показало, что при сорбции на них кислорода, иода, брома, воды и атомов некоторых металлов действительно восстанавливается порядок в расположении атомов на поверхности, что и позволяет восстанавливать нормальную гибридизацию. [c.199]


    Атомарная теплота образования. [c.200]

    Тепловой эффект реакции образования данного вещества из атомов называется Я — =-АЦ атомарной теплотой образования. Она [c.200]

    Чтобы проверить, соответствует ли изменение скорости реакции выделения водорода при переходе от одного металла к другому теории замедленного разряда, необходимо знать энергии (или теплоты) адсорбций атомарного водорода на соответствующих электродах. Если ме- [c.288]

    Так как Ад = 22,9 ккал моль и ЯТ 0,6 ккал моль, то получаем д//-( дс) 23 3 ккал моль. Зная теплоту адсорбции водорода на ртути и энергию диссоциации молекул Нз ( 104 ккал моль), можно вычислить энергию адсорбционной связи Hg — Н Ец .н = 4 X X 104 — 23,3 29 ккал моль. Если предположить, что изменение перенапряжения водорода при переходе от Pt к Hg целиком обусловлено изменением энергии адсорбции атомарного водорода, то получается Ене-н 27 ккал моль. Таким образом, экспериментальные данные подтверждают основные положения теории замедленного разряда о влиянии материала электрода на скорость электрохимической реакции. [c.289]

    Бокрис и Конуэй, измеряя наблюдаемый ток обмена (о в зависимости от начальной экспериментальной теплоты адсорбции АЯ атомарного водорода [60] для реакции выделения водорода на различных металлах, получили следующие данные  [c.124]

    Обычно атомарный водород получают при действии электрического разряда на молекулярный водород. Атомы водорода энергично рекомбинируют в молекулы, но для быстрого протекания реакции необходимо, чтобы энергия, которой обладают сталкивающиеся атомы, отводилась из сферы реакции. Поток атомов водорода, направленный на какую-либо твердую поверхность, сильно нагревает ее, так как поверхность служит в этом случае местом отвода теплоты. Возможен также распад молекулы Нг на ионы Н+ и Н" он происходит при взаимодействии водорода с переходными металлами ион Н при этом связывается с металлом. [c.148]

    Кавтарадзе, исследовавший адсорбцию водорода на слоях никеля, конденсированных в глубоком вакууме, сделал вывод о том, что суммарная адсорбция водорода состоит из двух частей молекулярной и атомарной хемосорбции [9—11]. Хемосорбированная молекула водорода является положительным концом диполя Ме — Н . Атомарно-адсорбированный водород является отрицательным концом диполя Ме+ — Н . Определение теплот атомарной и молекулярной хемосорбцни водорода на никеле показало, что теплота молекулярной хемосорбции больше теплоты физической адсорбции и меньше теплоты атомарной хемосорбции. [c.227]

    Сурьма, висмут и их соединения. Сурьма — белый, хрупкий металл с плотностью 6680 кг/м . Висмут — металл с красноватым отливом, хрупкий, легкоплавкий (температура его плавления 271°С.) Сурьма легко соединяется с хлором с выделением большого количества теплоты, образуя хлориды 5ЬС1з и 5ЬС15. Порошкообразный висмут соединяется с хлором со вспышкой. Подобно гидриду мышьяка, гидрид сурьмы (стибин) может быть получен при восстановлении сурьмянистых соединений атомарным водородом  [c.338]

    Теплоту образования соединения нз простых веществ,следует отличать ог атомарной теплоты образования. Образование молекулы из с в о б о д н ы х атомов всегда сопровождается выделением энергии. При образовании же какого-нибудь соединения из простых, веществ теплота может и поглощаться, так как образование свободных атомов нз простых веществ обычно требует затраты энергии. Так, образование ацетилена из атомов углерода и водорода сопровождается выделением энергии в количестве 393,4 ккал/моль, а образованич ацетилена из графита и молекул На сопровождается поглощением 54,2 ккал/моль, так как разложение молекул Нз на атомы требует затраты энергии в количестве 104,2 ккая/моль и лля получения свободных атомов углерода из графита необходимо затратить 171,7 ккал на грамм-атом. Таким образом, на образование свободных атомов углерода и водорода в количестве, необходимом для образования одного моля ацетилена, требуется 104,2-1-2X171,7=447,6 ккал. [c.195]

    В настоящее время почти для всех элементов имеются справочные значения ДЯ для температур от 298 до 3000 К или выше. Однако для многих металлов открытие сложного молекулярного состава их паров (см. 29) может повлечь за собой существенное изменение некоторых из этих значений. Следует думать, что по мере повышения надежности данных о теплотах атомизации простых веществ использование атомарных теплот образования соединений (или теплот атомизации их) будет быстро расширяться . Но пока они применяются преимущественно для органических соединений (см, 43) благодаря небольшому числу элементов, входящих в их состав. Для неорганических же соединений использова- [c.160]

    Теплота обратимой реакции распада винил-радикалов на атомарный водород и ацетилен вычисляется по теплотам образования винил-радикалов и ацетилена, равным 64,0 и 54,19 ккал [64, 332 , что дает для теплового эффекта реакции величину 42,09 ккал. Для теплоты образования винил-радикалов в литературе [333] приводится также значение 15 ккал, резко отличаюшееся от принятого, что даст для теплового эффекта реакции распада винил-радикалов значение порядка 90 ккал. Это приводит к заключению-о необычайной устойчивости винил-радикалов и стабилизирующему влиянию двойной связи на термическую устойчивость их. Располагая знанием энергии С—Н связи в винил-радикале, можно вычислить тепловой эффект Ор как разность энергий С—Н связи в винил-радикале и энергии образования тройной связи из двойной, пренебрегая энергией активации реакции присоединения Н к ацетилену. Если принять для энергий связей двойной Q . и тройной <3с=с значения 159 и 187 ккал [64], а для энергии С—Н связи в винил-радикале (Сс-н)с,н, величину примерно 103 ккал, то получим для теплоты реакции величину 75 ккал. При расчетах использовано значение 42 ккал. [c.250]

    Обладая способностью акцептировать два протона, N2H4 дает два ряда солей типа [NaHsJ l и [NaHeJ b. Являясь восстановителем, гидразин горит на воздухе (окисляясь до N2) с выделением большого количества теплоты (600 кДж/моль).,С помощью энергичных восстановителей (например, атомарного водорода) его можно восстановить до аммиака. Гидразин и его производные ядовиты. Их применяют в органическом синтезе, в производстве инсектицидов, пластмасс, взрывчатых веществ. Они также входят в состав реактивного топлива. [c.256]

    Расчетные энергетические параметры цвиттер-ионных аминонитраминов (I-VIII) представлены в таблице. Теплоты образования и плотности вычислялись методами групповой и атомарной аддитивности с использованием имитатора нейронной сети. Детонационные параметры рассчитывались термодинамическим методом с уравнением состояния BKW (при различных наборах параметров), а также корреляционными экспресс-методами (Камлета, Пепекина, Стайна и др.). В таблице приведены усредненные сходящиеся значения, полученные разными методами. [c.8]


Смотреть страницы где упоминается термин Теплота атомарная: [c.71]    [c.56]    [c.54]    [c.80]    [c.163]    [c.164]    [c.274]    [c.274]    [c.274]    [c.274]    [c.23]    [c.23]    [c.400]    [c.274]    [c.274]   
Краткий курс физической химии Издание 3 (1963) -- [ c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции образования химических соединений из свободных атомов. Атомарная теплота образования и теплота атомизации

Теплота образования, атомарная



© 2024 chem21.info Реклама на сайте