Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состояние стандартное вещества

    Дать сравнительную характеристику свойств образуемых галогенами простых веществ, указав характер изменения а) стандартных энтальпий диссоциации молекул Гд б) агрегатного состояния простых веществ при обычной температуре и давлении  [c.221]

    Свободная энергия Р, теплосодержание И и энтропия 5 чистых веществ зависят от количества, давления, физического состояния и температуры вещества. Если определять стандартное состояние твердого вещества или жидкости как состояние реального твердого тела или жидкости при 1 атм, а стандартное состояние газа — как состояние идеального газа при 1 атм, то для одного моля вещества в определенных стандартных условиях эти свойства зависят только от температуры. Термодинамические характеристики при давлениях, отличающихся от атмосферного, можно рассчитать, используя численные значения этих функций для стандартных условий и основные термодинамические закономерности (уравнение состояния, коэффициент сжимаемости вещества и др.). Влияние [c.359]


    По аналогии со стандартным состоянием газообразных веществ введем понятие стандартного состояния компонентов раствора. В соответствии с уравнением (11.25) химический потенциал компонента раствора равен химическому потенциалу этого вещества в чистом виде (л,- = 1, ц/ = о) при условии, что Yi = 1- Это условие [c.34]

    В таблицах приводятся свойства часто используемых чистых веществ в стандартном состоянии. Стандартными условиями для твердых и жидких веществ считается температура 25 °С и давление 1 атм. Для газов в качестве стандартного принимается такой идеальный газ, фугитивность которого равна 1 атм при температуре 25°С (гипотетическое состояние). [c.135]

    Для описания адсорбционного равновесия в настоящее время широко используются уравнения, базирующиеся на различных представлениях о механизме адсорбции, связывающие адсорбционную способность с пористой структурой адсорбента и физико-химические свойства адсорбтива. Эти уравнения имеют различную математическую форму. Наибольшее распространение при расчете адсорбционного равновесия в настоящее время получили уравнения Фрейндлиха, Лангмюра, Дубинина — Радушкевича. Дубинина — Астахова и уравнение Кисарова [3]. Рассчитанные по ним величины адсорбции удовлетворительно согласуются с опытными данными лишь в определенной области заполнения адсорбционного пространства. Поэтому прежде чем использовать уравнение изотермы адсорбции для исследования процесса методами математического модели]зования, необходимо осуществить проверку на достоверность выбранного уравнения экспериментальным данным си-. стемы адсорбент —адсорбтив в исследуемой области. В автоматизированной системе обработки экспериментальных данных по адсорбционному равновесию в качестве основных уравнений изотерм адсорбции приняты указанные выше уравнения, точность которых во всем диапазоне равновесных концентраций и температур оценивалась на основании критерия Фишера. Различные способы экспериментального получения данных по адсорбционному равновесию, а также расчет адсорбционных процессов предполагают необходимость получения изобар и нзостер. В данной автоматизированной системе указанные характеристики получаются расчетом на основе заданного уравнения состояния адсорбируемой фазы. Если для взятой пары адсорбент — адсорбат изотерма отсутствует, однако имеется изотерма на стандартном веществе (бензол), автоматизированная система располагает возможностью расчета искомой изотермы на основе коэффициента аффинности [6], его расчета с использованием парахора или точного расчета на основе уравнения состояния. [c.228]


    Определенные для веществ в стандартном состоянии стандартные энтальпии и другие стандартные термодинамические величины. обозначают верхним индексом (°), нижним индексом указывают температуру, при которой они определены например АЯ298 (определена при 298,15 К знаки, стоящие после запятой в индексе, обычно не указывают) или АЯюоо (определена при 1000 К). Такое единообразие делает расчеты строгими. Стандартная энтальпия образования вещества АЯ/ — это изменение энтальпии в процессе образования данного вещества в стандартном состоянии из термодинамически устойчивых фюрм простых веществ, также находящихся в стандартных состояниях. [c.166]

Таблица 5. Высокотемпературные составляющие энтропии (5 — зэз) для основного стандартного состояния простых веществ, а также для Таблица 5. Высокотемпературные составляющие энтропии (5 — зэз) для <a href="/info/856014">основного стандартного состояния</a> <a href="/info/3252">простых веществ</a>, а также для
    Все сказанное в разд. 2-6 верно по той причине, что энтальпия, Н, является функцией состояния. Нет никакой необходимости табулировать теплоты всех реакций достаточно знать только теплоты тех реакций, надлежащей комбинацией которых могут быть получены все остальные реакции. Для такой цели выбираются реакции образования соединений из входящих в них элементов в их стандартных состояниях. Стандартным состоянием газа при заданной температуре считается его состояние при парциальном давлении 1 атм стандартным состоянием жидкости или твердого вещества является их состояние в чистом виде при внешнем давлении 1 атм. В большинстве термодинамических таблиц температура обычно полагается равной 298 К. Стандартные теплоты образования многих веществ указаны в приложении 3. [c.24]

    В качестве стандартного состояния индивидуальных жидких и твердых веществ принимают состояние их при данной температуре и при давлении, равном 1 атм, а для индивидуальных газов— такое их состояние (большей частью гипотетическое), когда при данной температуре и давлении, равном 1 атм, они обладают свойствами идеального газа. Все величины, относящиеся к стандартному состоянию веществ, отмечают верхним индексом (А//ойр, Нт — Н°п, С р и т. д.) и называют стандартными (стандартная теплота образования, стандартная энтальпия). В области обычных давлений изменение давления слабо влияет на тепловые эффекты реакций и энтальпию веществ, так как внутреняя энергия идеального газа ие зависит от давления, а в конденсированном состоянии сжимаемость веществ мала. Однако многие другие величины, как, например, энтропия газов, сильно зависят От Давления. [c.195]

    В несимметричной системе стандартных состояний в качестве стандартного состояния растворенного вещества выбирают гипотетический одномоляльный раствор, который обладает свойствами бесконечно разбавленного раствора. [c.367]

    Теплота сгорания в настоящее время и в оригинальных работах, и в справочных изданиях обычно выражается для стандартного состояния исходных веществ и продуктов реакции и относится к 25°С. Теплота сгорания различна в зависимости от условий проведения процесса — при постоянном объеме или при постоянном давлении. В нервом случае она выражает изменение внутренней энергии системы (Дб с = —Qv), а. во втором — изменение энтальпии (дя = -др). При сжигании в калориметрической бомбе по условиям опыта непосредственно определяется величина лис, а затем путем пересчета ДЯс. В оригинальных работах обычно приводят обе величины, в справочных изданиях большей частью только одну из них — ДЯс, так как она непосредственно связана с AH°f. [c.208]

    В растворах твердых веществ в жидкостях для растворителя целесообразно сохранить в качестве стандартного состояние чистого вещества. Однако для растворенного вещества такой выбор стандартного состояния неудобен, так как твердые вещества ограниченно растворимы и при раствор не существует. Так же неудобно принимать состояние бесконечно разбавленного раствора в качестве стандартного. В таком растворе 72- , но так как Л 2 0, то химический потенциал обращается в отрицательную бесконечность и становится неопределимым. [c.35]

    Мольной теплотой образования химического соединения ДЯ/, кал1моль, называется теплота реакции образования одного моля этого соединения из простых веществ при стандартных условиях. Агрегатное состояние исходных веществ реакции должно быть постоянным. [c.28]

    Стандартное состояние растворенного вещества в данном случае—это неосуществимое состояние чистого второго компонента, определяемое конечной, экстраполированной точкой прямой р —кх. При х = значение р равнялось бы давлению пара над второй жидкостью в этом неосуществимом состоянии, а летучесть этой жидкости была бы равна стандартной летучести равной в свою очередь коэффициенту к [c.210]


    Изменение внутренней энергии нлн энтальпии принято относить к тому случаю, когда все исходные вещества и все продукты реакции находятся в стандартных состояниях. Стандартным состоянием вещества при данной температуре называется его состояние в виде чистого вещества при давлении (в случае газов — при парциальном давлении данного газя), равном нормальному атмосферному давлению (101,325 кПа, или 760 мм рт.ст.). Условия, при которых все участвующие в реакции вещества находятся в стандартных состояниях, называются стандартными условиями протекания реакции. Отнесенные к стандартным условиям изменения соответствующих величин называются стандартными изменениями и их обозначения снабжаются верхним индексом А1 ° — [c.74]

    В приложении 3 приведены табулированные стандартные свободные энергии образования соединений из элементов в их стандартных состояниях. Стандартные состояния для газа, чистой жидкости или чистого кристалла определяются таким же образом, как и в случае энтальпий для газа - парциальное давление 1 атм, а для чистой жидкости или чистого кристалла-обычно 298 К. Стандартным состоянием растворенного вещества в растворе считается концентрация 1 моль на литр раствора, т. е. 1 М раствор. Стандартным состоянием компонента раствора при табулировании энтальпий считается не 1 М раствор, а настолько разбавленный раствор, что добавление к нему дополнительного количества растворителя не приводит к новым тепловым эффектам. Однако поскольку энтальпия не слишком сильно зависит от концентрации (в отличие от свободной энергии, в чем мы убедимся в разд. 16-6), можно приближенно считать, что табулированные значения энтальпий относятся к 1 М раствору. [c.72]

    Вместо атомарной теплоты образования (т. е. теплоты образования из свободных атомов элементов ), ДЯ , применявшейся в прежних работах Фаянса в настоящее время в органической химии обычно рассматривают теплоту атомизации (т. е. теплоту разложения на свободные атомы ДЯа = — ДЯ)". Как было указано в 8 и 27, эти величины связываются с теплотами образования из простых веществ (из элементов) через теплоты атомизации элементов аи1, к), которые представляют собой изменение энтальпии при переходе 1 г-атома элемента К из стандартного состояния простого вещества в стандартное состояние одноатомнОго газа при данной температуре. [c.211]

    В состояниях, не слишком далеких от равновесного, оба эти фактора действуют обычно в противоположных направлениях, и общее течение реакции определяется влиянием преобладающего фактора, пока не будет достигнуто состояние, при котором их влияния становятся равными по величине, что отвечает состоянию равновесия. Тепловой эффект обычно слабее зависит от концентрации веществ, участвующих в реакции, поэтому достижение равновесия определяется преимущественно концентрационной зависимостью энтропии. Изменение энтропии входит в уравнение в виде произведения TAS, поэтому при прочих равных условиях повышение температуры усиливает влияние, оказываемое изменением энтропии. Для стандартного состояния всех веществ, участвующих в реакции, рассматриваемое уравнение принимает вид  [c.267]

    Термодинамические расчеты свойств растворов сильных электролитов строятся в настоящее время на использовании введенной Льюисом величины активности электролита или активности его ионов. Активность определяется как величина, подстановка которой вместо концентрации в термодинамические уравнения, действительные для простейших систем., делает их применимыми к рассматриваемым растворам ( 117). В растворах сильных электролитов в качестве стандартного принимают не чистое состояние данного вещества, а состояние раствора при полной диссоциации электролита и при отсутствии осложняющего взаимодействия между ионами его. [c.394]

    Стандартным состоянием газообразного вещества при любой температуре является состояние гипотетического идеального газа, летучесть которого равна единице, а энтальпия равна энтальпии реального газа при той же температуре и давлении, стремящемся к нулю. [c.216]

    Понятие об активности главным образом используется при расчетах состава смеси или при составлении материального баланса. Если стандартным состоянием вещества в растворе считать состояние чистого вещества при температуре и давлении смеси то активность его будет функцией мольной концентрации, выраженной [c.15]

    Как следует из равенства (1,43), константа равновесия зависит от температуры и изменения изобарного термодинамического потенциала, который, в свою очередь, зависит от температуры, условий стандартного состояния каждого вещества и от вида стехио-метрического уравнения реакции. Уравнение (1,42) можно представить в виде  [c.20]

    В настоящее время принято теплоты образования относить к стандартному состоянию рассматриваемого вещества и основному стандартному состоянию исходных элементов, все отступления от этого следует четко оговаривать. Теплоты образования можно определять для любой температуры, но для сопоставимости дан ных в качестве стандартной принята температура 25 °С = 298,15 К [c.55]

    Стандартные состояния газообразных веществ и растворов изучаются в разделах курсов неорганической и физической химии [c.64]

    В графе Состояние указано агрегатное состояние вещества в стандартных условиях, к которым относятся данные последующих четырех граф. В качестве стандартного состояния во всех случаях принято состояние чистого вещества при температуре 25° С 298,15° К) и давлении 1 атм. Температуры плавления и кипения приведены при нормальном давлении. [c.854]

    Если нет дополнительных указаний, то агрегатные состояния исходных веществ и продуктов горения считаются такими, каковы их устойчивые состояния при стандартных условиях. Например, теплота сгорания ацетона равна —1789,79 кДж/моль. Это значит, что при сгорании 1 моль жидкого ацетона с образова- [c.73]

    Верхний индекс означает, что указанная величина относится к стандартному состоянию. Для газов в качестве стандартного принято состояние идеального газа при давлении 101 325 Па (1 атм), а для конденсированных фаз—-состояние чистого вещества при давлении 101 325 Па (1 атм). В частности, пра температуре 298,15 К стандартным состоянием простых веществ являются для углерода — С (графит), для водорода — На ( . ), для хлора — С1а (г.), для фтора — Ра (г.), для кислорода — Оа (г.), для азота — Ка (г.)1 ВАЯ серы— [c.423]

    Для растворителя в качестве стандартного состояния обычно принимают состояние чистого растворителя, т. е. полагают, что д = ад=1. В качестве стандартного состояния растворенного вещества принимают состояние при бесконечном разбавлении раствора, когда активности растворенного вещества равны единице, т. е. Хв = Ов = 1. Таким образом, стандартным состоянием растворителя и растворенного вещества будет их состояние в бесконечно разбавленном растворе, в котором активности совпадают. При ад=1 и ав=1 химические потенциалы Цд = [х и Цд = ь1в. Если концентрацию выражают через моляльность, то [c.84]

    Стандартным состоянием газообразных веществ является состояние гипотетического идеального газа, фугитивность (летучесть) которого равна единице, а энтальпия равна энтальпии реального газа при той же температуре и давлении, стремящемся к нулю. За стандартное состояние растворов принимается состояние гипотетического идеального раствора, для которого парциальная мольная энтальпия и теплоемкость растворенного вещества те же, что и для реального бесконечнр разбавленного раствора, а энтропия и энергия Гиббса те же. что и раствора с моляльностью, равной единице [c.64]

    В качестве стандартного состояния растворенного вещества выбирают гипотетический раствор единичной концентрации (измеренной в определенной шкале концентраций) при данных температуре и давлении, ведущий себя как идеальный. [c.35]

    Если за стандартное состояние растворенного вещества принять его состояние в бесконечно разбавленном растворе, то физический смысл величины /1,—Я г соответствует теплоте, поглощенной при переносе 1 моля компонента I при постоянных температуре я давлении из очень большого количества бесконечно разбавленного раствора компонента в том же растворителе в очень большую массу раствора, имеющего интересующую нас концентрацию. Поэтому Ы—можно рассматривать как теплоту переноса -го компонента от бесконечного разведения к данному раствору. [c.316]

    Приняв за стандартное состояние растворенного вещества его состояние в бесконечно разбавленном растворе, физический смысл величины vi—v i можно рассматривать как изменение объема при переносе 1 моля компонента I при постоянных температуре и давлении в изучаемый раствор из бесконечно разбавленного раствора в том же растворителе. [c.316]

    Стандартное состояние чистое вещество [c.51]

    За стандартное состояние компонента реального раствора можно принять любое состояние. В таком случае Р° может не совпадать с давлением насыщенного пара над чистым компонентом. За стандартное состояние растворителя удобно принять его состояние в чистом виде, т. е. при дс1- - 1. Для растворенного вещества стандартное состояние можно выбрать аналогично, считая, что 02=1 при Х2 . Но может оказаться удобным принять в качестве стандартного состояния растворенного вещества его состояние в бесконечно разбавленном растворе. Дополнительно считают, что раствор в стандартном состоянии обладает свойствами идеального раствора. Если вместо молярной доли используют другие выражения концентраций, то стандартному состоянию компонента раствора может соответствовать равенство единице его концентрации, выраженной не через Хс, а с помощью другой выбранной величины (с,, пц). [c.182]

    Абсолютные значения многих термбдинамических - функций (внутренней энергии, энтальпии и др.) для какого-нибудь данного вещества в настоящее время неизвестны, но изменения этих функций при переходе вещества из одного состояния в другое часто могут быть определены. Это дает возможность характеризовать значение рассматриваемой функции в интересующем состоянии по сравнению до значением ее в другом состоянии. Сопоставляя значения функции для различных состояний данного вещества, рассматривают отличие их от значения, относящегося к одному определенному состоянию (стандартное состояние). Так, свойства компонентов в растворах различной концентрации сравнивают со свойствами тех же компонентов в чистом состоянии при той же температуре, свойства неидеальных газов часто сопоставляют со свойствами их в состоянии идеального газа при той же температуре и при том же давлении (или при давлении р=1 атм).  [c.183]

    Коэффициент активности ионов в растворе сильного электролита, как и слабого электролита (см. 8.6), показывает меру отклонения свойств реального раствора ог свойств идеального раствора, находящегося в стандартном состоянии. Для растворов сильных электролитов в качестве стандартного состояния принимают не чистое состояние данного вещества, а состояние раствора при полной диссоциации электролита и при отсутствии электростатического взаимодействия между ионами. [c.134]

    В кансдой из этих групп сначала помещены таблицы данных, относящихся к 298,15 К, потом — к высоким температурам. Внутри таких подгрупп большей частью сначала рассматриваются конденсированные состояния, потом газообразное. Однако данные, относящиеся к основному стандартному состоянию простых веществ при [c.318]

    Базисным состоянием для всех величин в этих таблицах служит стандартное состояние данного вещества при 298,15 К в форме, к которой относятся данные для него, приведенные в табл. 9. В дополнения здесь включены некоторые не помещенные в таблицу соединения, для которых имеются данные о температурной зависимости теплоемкости, энтальппп или связанных с ними величин. [c.418]

    Сравнение (129.1) с (124.1) показывает, что в термодинамике реальных растворов активности отводится такое же место, какое в термодинамике идеальных растворов отводится концентрации. Активность поэтому иногда называют эффективной или действующей концентрацией. При определении активности существенное значение имеет выбор стандартного состояния. В термодинамике растворов наибольшее распространение имеют системы стандарных состояний — симметричная и несимметричная. В симметричной системе за стандартное состояние каждого компонента раствора принимается состояние чистого вещества, и в этом состоянии активность каждого компонента принимается равной единице  [c.364]

    В графе Состояние указано агрегатное состояние вещества стандартных условиях, к который относятся данные последующих четырех граф. качестве стандартного состояния во всех случаях принято состояние чистого вещества при температуре 25 С (298,15° К) и давлении 1 атм. Для твердых веществ стандартному состоянию обычно соответствует соетояние устойчивой модификации. Температуры плавления и кипения приведены при норма.1ьном давлении, аа исключением отдельных случаев, для которых соответствующие давления указаны в скобках. [c.774]


Смотреть страницы где упоминается термин Состояние стандартное вещества: [c.69]    [c.268]    [c.163]    [c.567]    [c.303]    [c.48]   
Руководство по физической химии (1988) -- [ c.71 ]




ПОИСК





Смотрите так же термины и статьи:

Активность вещества в стандартном состояни

Анализируемое вещество стандартное состояние

Изобарные потенциалы образования некоторых соединений и простых веществ из элементов в стандартном состоянии

Приведенная энергия Гиббса, приращение энтальпии и стандартная f теплота образования (при Т 0 К) некоторых веществ в состоянии идеального газа

Соотношения между термодинамическими параметрами веществ в стандартных состояниях жидкости и газа или кристалла и газа

Состояние стандартное

Стандартное состояние вещества в растворе

Стандартное состояние растворенного вещества

Стандартные вещества

ТАБЛИЦЫ ТЕРМОДИНАМИЧЕСКИХ ВЕЛИЧИН Термодинамические свойства простых веществ в стандартном состоянии

Термодинамические свойства веществ в состоянии стандартного водного раствора

Энтропия адсорбции Кембол Возможные стандартные состояния для адсорбированного вещества

Энтропия веществ при стандартных условиях (в стандартном состоянии) Методика расчета энтропии по термохимическим данным

длина волны света вещества г стандартном состоянии



© 2024 chem21.info Реклама на сайте