Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы температура кипения

    Как изменяется температура плавления и кипения в ряду щелочных металлов и чем это объясняется  [c.104]

    Щелочные металлы характеризуются незначительной твердостью, малой плотностью и низкими температурами плавления и кипения. Наименьшую плотность имеет литий, самую низкую температуру плавления — франций (см. табл. 14.2). [c.383]

    Из табл. 11.1 следует, что для щелочных металлов характерны невысокие температуры плавления, кипения и небольшие плотности. [c.251]


    Помимо рассмотренных типов связи, особо выделяют металлическую связь, которая проявляется при взаимодействии атомов элементов, имеющих избыток свободных валентных орбиталей по отношению к числу валентных электронов. При сближении таких атомов, например в результате конденсации пара, электроны приобретают способность свободно перемеш,аться между ядрами в пространстве именно благодаря относительно высокой концентрации свободных орбиталей. В результате этого в решетке металлов возникают свободные электроны (электронный газ), которые непрерывно перемещаются между положительными ионами, электростатически их притягивают и обеспечивают стабильность решетки металлов. Таков механизм образования металлической связи у непереходных металлов. У переходных металлов механизм ее образования несколько усложняется часть валентных электронов оказывается локализованной, осуществляя направленные ковалентные связи между соседними атомами. Поскольку ковалентная связь более прочная, чем металлическая, у переходных металлов температуры плавления и кипения выше, чем у щелочных и щелочноземельных металлов, а также у переходных металлов с электронными оболочками, близкими к завершению. Это наглядно видно при сопоставлении температур плавления и кипения металлов 6-го периода (табл. 10). [c.37]

    Сильное различие в температурах плавления н кипения следует объяснить различием прочности химической связи между атомами в металлах. Исследования показали, что в чистом виде металлическая связь характерна лишь для щелочных и щелочноземельных металлов. Однако у других металлов, и особенно переходных, часть валентных электронов локализована, т. е. осуществляет ковалентные связи между соседними атомами. А поскольку ковалентная связь прочнее металлической, то у переходных металлов температуры плавления и кипения, как это видно из рис. 5.4, намного выше, чем у щелочных и щелочноземельных металлов. [c.153]

    Металлы обычно отличаются сравнительно высокой плотностью, высокими температурами плавления и кипения, относительно высокой прочностью. Однако эти физические свойства присущи не всем металлам так, температуры плавления ртути и галлия достаточно низки и равны минус 30 и плюс 39° С щелочные металлы имеют ннзкую плотность и твердость и плавятся при сравнительно невысокой температуре  [c.106]


    Тефлон отличается рядом выдающихся свойств. Так, по своей химической стойкости он превосходит не только все высокомолекулярные вещества (природные, искусственные и синтетические), но и металлы, даже благородные — золото и платину. Вполне стоек против кислот, щелочей, солей, окислителей. Даже такой сильнейший окислитель, как царская водка (смесь кислот азотной и соляной), не действует на тефлон, в то же время указанный реактив растворяет золото и платину. Было испытано много сотен различных реагентов, но выяснилось, что они не действуют на тефлон вплоть до температур кипения. ОказалосЁ, что только фтор и щелочные металлы (расплавленные ИЛИ растворенные в жидком аммиаке) агрессивны в отношении тефлона. Далее, смола чрезвычайно устойчива к действию агентов, вызывающих коррозию. Вода даже при длительном соприкосновении [c.244]

    Щеяочные металлы. Характеристика элементов 1А-группы. Сопоставление некоторых физических и химических свойств натрия и лития, с одной стороны, и элементов подгруппы калия — с другой, свидетельствует о том, что натрий ближе к собственно щелочным металлам (подгруппа калия). Поэтому второй типический элемент не выделен в отдельный параграф, чтобы не создавалось впечатление искусственного отделения его от собственно щелочных металлов. В ряду Ка—Сз наблюдается плавное изменение плотности, температур плавления и кипения, а также энергий диссоциации двухатомных молекул Эз и стандартных электродных потенциалов в водных раствор 1Х. Общим для всех щелочных металлов является ярко выраженная электроположительность и химическая активность вследствие больших величин радиусов, малых значений ионизационных потенциалов и ОЭО. Ниже приведены некоторые свойства элементов и простых веществ IА-группы  [c.307]

    Приведенные в табл. 14.2 данные показывают, что в большинстве случаев свойства щелочных металлов закономерно изменяются при переходе от лития к цезию. В основе наблюдающихся закономерностей лежит возрастание массы и радиуса атома в подгруппе сверху вниз. Рост массы приводит к возрастанию плотности. Увеличение радиуса обусловливает ослабление сил притяжения между атомами, что объясняет снижение температур плавления и кипения и уменьшение энергии атомизации металлов, а также уменьшение энергии ионизации атомов при переходе от лития к цезию. Однако стандартные электродные потенциалы щелочных металлов изменяются в ряду Li — s не монотонно. Причина этого, подробно рассмотренная в разделе 11.3.2, заключается в том, что величины электродных потенциалов связаны с несколькими факторами, различно изменяющимися при переходе от одного элемента подгруппы к другому. [c.383]

    Подобие электронной конфигурации обусловливает сходство химических и физических свойств этих элементов (щелочных металлов). Все они сравнительно легко теряют единственный валентный электрон, имеют низкие температуры плавления и кипения, низкую, плотность, образуют однотипные соединения, к примеру МегО, МеОН и др. [c.52]

    Подробный обзор о лабораторной перегонке иод вакуумом металлов и сплавов, не содержащих железа, приведен в работе Шпендлеве [116]. Хорслей [117] описал аппаратуру для разгонки щелочных металлов. В соответствии с этими работами металл расплавляют в вакууме, фильтруют и затем перегоняют преимущественно ири давлении до 10" мм рт. ст. Пары металла конденсируют в конденсаторе, охлаждаемом циркулирующим маслом. Для получения чистого тантала Паркер и Вильсон [118] использовали хлорид тантала ТаС ., (температура кипения 240° С при 760 мм рт. ст.). Безобразов с сотр. [118а] разработал кварцевый аппарат диаметром 40 мм и высотой разделяющей части 1250 мм для аналитической перегонки высококипящих веществ с температурой кипения до 1000°С (сера, селен, теллур, цинк, кадмий, сульфид мышьяка и др.). [c.260]

    Физические свойства. Кальций — серебристо-белый и довольно твердый металл, легкий (пл. 1,55 г/см ). Температуры плавления и кипения выше, чем у щелочных металлов. Природный кальций состоит из смеси шести изотопов с массовыми числами 40 (основной изотоп), 42, 43, 44, 46 и 48. В исследованиях применяется искусственный изотоп Са. [c.243]

    Промышленных методов очистки газов от H2S и Oj весьма много. Из них наибольший интерес представляет очистка этанол-аминами, позволяюп ая при некоторых условиях совместить удаление H2S, СО2 и Н2О. Кроме этаноламиновой очистки для этой цели применяется водная промывка и очистка водными растворами карбонатов щелочных металлов. Этаноламиновая очистка углеводородных газов от HjS и СО 2 была разработана еще в 1930 г. Сейчас этот метод широко применяется в разных вариантах при подготовке сырья для нефтехимического синтеза. При очистке природных газов применяется водный раствор моноэтаноламина концентрацией 15— 20%. Помимо низкой стоимости моноэтаполамин характеризуется высокой реакционной способностью, стабильностью и легкостью регенерации. Температура кипения моноэтаноламина 170° С, он неограниченно растворяется в воде. [c.161]


    Моноэфиры, по-видимому, достаточно прочные в термическом отношении вещества. Возможно, моносульфиды являются продуктом, образующимся из других сернистых соединений с открытой цепью. Дитиоэфиры, или дисульфиды, построены по типу К — 8 — 3 —-Н и представля )т собой также нейтральные вещества с высокими температурами кипения. Дисульфиды легко, восстанавливаются до меркаптанов, на чем основан способ их определения в нефти. Происхождение дисульфидов, по-видимому, связано с окислением меркаптанов. Другой пуТь образования — через меркаптиды и полисульфиДы щелочных металлов  [c.174]

    Таллий находится в 9-м ряду III группы периодической системы. Это мягкий серебристо-белый металл, тускнеющий на воздухе, покрывающийся черной пленкой ТЬО. Температура плавления таллия 303°, кипения 1460°. Своими свойствами таллий близок к свинцу, серебру и щелочным металлам. [c.561]

    По многим своим физическим свойствам водород напоминает галогены. Например, так же как и хлор, водород при обычных условиях двухатомный газ, а не металл. Он имеет очень низкую температуру кипения (—252,8°), и плавления (—259,2 ), как и галогены. По химическим же свойствам водород все-такй больше напоминает щелочные металлы. [c.283]

    Несомненно, что высокие температуры плавления и кипения связаны с большим, чем у щелочных металлов, числом валентных элект()онов. Плавление и в этом случае мало изменяет состояние электронов, и перекрывание валентной зоны с зоной проводимости сохраняется как в твердом, так п в жидком состоянии, хотя проводимость щелочноземельных металлов, а именно бериллия, магния и стронция, заметно ниже проводимости щелочных металлов. [c.238]

    Чистые щелочноземельные металлы имеют более высокие температуры плавления и кипения по сравнению с щелочными металлами, потому что для образования металлических связей в них имеется по два электрона на атом. По той же причине они обладают большей твердостью, хотя их тоже можно резать острым стальньгм ножом. Бериллий и магний-единственные элементы этой группы, широко используемые как конструкционные. металлы благодаря своей легкости они используются в чистом виде или в составе сплавов в авиастроительной и космической промышленности, где вес является очень важным фактором. [c.436]

    Теплоты образования гидроксидов цз Ме -Ь /гОг + /2 2 значительно выше таковых же для оксидов и понижаются от лития к цезию, но разница между ними очень мала. Однако гидроксиды щелочных металлов термически очень устойчивы и с большим трудом отщепляют воду литий отдает ее только при температуре около 500° С, для натрия и калия выделения воды не происходит даже при температурах кипения (МаОН 1388°, КОН 1324° С). [c.240]

    Дифракционные исследования строения жидких лантаноидов не производились. По аналогии со щелочными металлами и другими металлами, имеющими ОЦК структуру вблизи температуры плавления, можно полагать, что ближняя упорядоченность типа ОЦК упаковки у многих жидких лантаноидов сохраняется. Косвенно об этом говорят малые величины энтропии плавления, как правило, примерно такие же, как у щелочных металлов, А7 Дж/К-моль. Теплоемкость Ср жидких лантаноидов вблизи температуры плавления определена неточно. Тем не менее все же отметим, что величины Ср относительно малы именно у жидких европия и иттербия, где межатомные расстояния в ряду лантаноидов максимальны. Температуры кипения многих из лантаноидов определены не очень точно, но в целом прослеживается постепенное, хотя и не регулярное понижение Т хип с ростом порядкового номера лантаноида. Поэтому температурный интервал, в котором существует жидкая фаза, постепенно сужается. Если у церия разность А — [c.186]

    Фосфаты. Малорастворимые осадки фосфатов титана переменного состава образуются при добавлении фосфорной кислоты или растворимых фосфатов к растворам сульфатов или хлоридов титана. Известен только один кристаллический фосфат постоянного состава, отвечающий эмпирической формуле ТЮ -РгОв и образующийся прп растворении Ti0(0H)2-a H20 в сфорной кислоте при температуре кипения. Фосфаты титана растворяются в избытке фосфорной кислоты вследствие комплексообразования. Однако при упаривании раствора образуется стеклообразная масса. Комплексные соединения титана с анионом POi , имеющие постоянный состав, например Ко[(Т10)2(Р04)з], K2[TI4(P04)g], образуются при сплавлении TiO с фосфатами щелочных металлов [9, 10, 17]. [c.225]

    В отсутствие воздуха литий и его аналоги представляют собой серебристо-белые (за исключением желтоватого цвета) вещества с металлическим блеском. Все щелочные металлы характеризуются небольшими плотностями, малой твердостью, низкими температурами плавления и кипения и хорошей электропроводностью. Их важнейшие константы сопоставлены ниже  [c.403]

    Все металлы главных подгрупп I и II групп серебристо-белого цвета, хорошо проводят тепло и электрический ток. Щелочные металлы имеют низкие температуры плавления и температуры кипения (tni (Li) = 180 °С, tn.i.( s) = = 29 °С t° n.(Li) = 1350 ° , t° n,( s) = 670 °С) низкую плотность (pLi = 0,534 г/см рс5=1,87 г/см ). Температуры плавления и плотности металлов II группы вытс, чем у щелочных металлов (tn.i,(Be) = 1283 °С, Рве — = 1,85 г/см" t°n.(Ba) = 7iO °С, -=3,50 г/см ). [c.285]

    Однако и при отсутствии химических реакций скорость поступления образца в плазму зависит от рода газа, так же как она зависит от физических свойств образца. В работе Валлн и Тирса измерялась температура анода дуги постоянного тока, в который помешали различные образцы. В качестве образцов использовались хлориды щелочных металлов, точки кипения которых известны. Температура анода (на определенном расстоянии от области разряда) при разряде в аргоне практически не зависела от образца и была оценена в 1040—1100° С. В гелии же температура анода зависела от введенного в электрод образца и росла с повышением точки кипения последнего. Изменение скорости поступления вещества в плазму в различных инертных газах отмечается и в других работах в]. [c.241]

    Сульфиды получают кипячением смеси тиофенолов и галоидных алкилов со спиртовым раствором щелочи. Этим методом из тиоксиленолов и н-октилбромида получают октилксилилсульфиды [2]. Сульфиды и их полимеры синтезируют из меркаптанов или меркаптидов щелочных металлов и галоидных алкилов в растворе азотистых оснований в присутствии источника ионов меди [3]. Дисульфиды со значительным выходом образуются при окислении меркаптанов элементарной серой в растворителе. Процесс протекает непрерывно в противоточной колонне при нормальном давлении и температуре, не превышающей температуру кипения синтезируемых дисульфидов [4]. Приведенные примеры далеко не исчерпывают методы синтеза соединений двухвалентной серы. Ведутся интенсивные исследования в области использования нефтяных сернистых соединений. Результаты позволяют рассчитывать на получение больших количеств [c.51]

    Свойства бериллия, магния и щелочноземельных металлов. Бериллий, магний и щелочноземельные металлы имеют серебристо-белый цвет, легкие (за исключением радия), хотя плотность их значительно выше, чем у щелочных металлов. Бериллий и магний кристаллизуются в гексагональной решетке, кальций, стронций и барий — в кубической гранецентрированной. При этом наиболее прочную кристаллическую решетку обра зует бериллий, поскольку его ионы и атомы имеют са мые малые размеры. Поэтому бериллий по твердости, температурам плавления и кипения значительно превосходит остальные элементы данной подгруппы. [c.420]

    Фторид бериллия = 1327°) позволяет вести процесс с получением расплавленного бериллия, образующего корольки металла. Из восстановителей наиболее подходит магний, так как щелочные металлы, например Na, обладают низкой температурой кипения кроме того, NaF — растворимое соединение, что затрудняет извлечение остатков BeFa из шлака. Выше уже говорилось, что кальций дает с бериллием соединение aBeia и, кроме того, как товарный продукт он дороже магния и более загрязнен. [c.209]

    Свойства щелочных металлов. Щелочные металлы — серебристо-белого цвета, характеризуются незначительной твердостью, малой плотностью, низкой температурой плавления и кипения, высокой электрической проводимостью. Все щелочные металлы имеют од-потиШШе кртеталлические решетки. С увеличением размеров атомов от лития к цезию ослабляется металлическая связь. Соответственно этому в ряду Ы—Сз понижаются твердость, температура плавления (от 180,5 до 28,6°С) и кипения (от 1300 до 685 °С) металлов. [c.408]

    Значительно большие плотности, температуры плав ления и кипения, твердости металлов подгруппы меди, по сравнению со щелочными металлами, обусловлены меньшими размерами их атомов и более плотной упа ковкой крсталлйчёскоя решетке. [c.414]

    Гидроксиды щелочных металлов МеОН — кристаллические вещества, растворимые в воде и спиртах. Их водные растворы — едкие щелочи — самые сильные основания. Гидроксиды получают электролизом водных растворов хлоридов. При этом в катодном пространстве выделяется водород и образуется гидроксид щелочного металла. Побочными продуктами производства являются водород и хлор (на аноде). При нейтрализации растворов гидроксидов щелочных металлов галогеноводородными кислотами образуются их галогениды, которые являются характеристическими соединениями. Они также получаются непосредственным взаимодействием щелочных металлов с галогенами. Ггшогениды щелочных метгьл-лов характеризуются высокими температурами плавления и кипения, по природе химической связи они — самые ионные соединения. [c.308]


Смотреть страницы где упоминается термин Щелочные металлы температура кипения: [c.10]    [c.10]    [c.434]    [c.149]    [c.252]    [c.419]    [c.117]    [c.164]    [c.225]    [c.269]    [c.15]    [c.58]    [c.328]    [c.182]    [c.279]    [c.133]   
Физическая химия Книга 2 (1962) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы температуры кипения



© 2025 chem21.info Реклама на сайте