Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходные металлы температура кипения

    Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал - бронзу. Медные предметы были найдены [c.446]


    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]

    Переходные металлы характеризуются твердостью и высокими температурами плавления и кипения. С повышением порядкового номера в пределах периода размеры атомов обнаруживают общую тенденцию к уменьшению, обусловленную последовательным увеличением заряда ядра. [c.437]

    Металлическая связь не исключает некоторой доли ковалентности. Металлическая связь в чистом виде характерна только для щелочных и щелочно-земельных металлов. Ряд физических свойств других металлов, особенно переходных (температуры плавления и кипения, энергия атомизации, твердость, межатомные расстояния), свидетельствуют о несводимости химической связи в них то,пько к металлической. Современными физическими методами исследования установлено, что в переходных металлах лишь небольшая часть валентных электронов находится в состоянии обобществления. Число электронов, принадлежащих всему кристаллу, невелико--1 электрон/атом. Например, такой типичный переходный металл, как ниобий, имеет концетрацию обобществленных электронов всего лишь 1,2 на один атом Nb. Остальные же электроны осуществляют направлен- [c.95]


    Некоторые физические свойства переходных металлов (температуры плавления и кипения, а также твердость) обусловлены числом имеющихся в их атомах неспаренных -электронов. Эти свойства постепенно усиливаются, достигая максимума в группе Мп, а затем с юза уменьшаются с увеличением порядкового номера элементов. [c.450]

    Помимо рассмотренных типов связи, особо выделяют металлическую связь, которая проявляется при взаимодействии атомов элементов, имеющих избыток свободных валентных орбиталей по отношению к числу валентных электронов. При сближении таких атомов, например в результате конденсации пара, электроны приобретают способность свободно перемеш,аться между ядрами в пространстве именно благодаря относительно высокой концентрации свободных орбиталей. В результате этого в решетке металлов возникают свободные электроны (электронный газ), которые непрерывно перемещаются между положительными ионами, электростатически их притягивают и обеспечивают стабильность решетки металлов. Таков механизм образования металлической связи у непереходных металлов. У переходных металлов механизм ее образования несколько усложняется часть валентных электронов оказывается локализованной, осуществляя направленные ковалентные связи между соседними атомами. Поскольку ковалентная связь более прочная, чем металлическая, у переходных металлов температуры плавления и кипения выше, чем у щелочных и щелочноземельных металлов, а также у переходных металлов с электронными оболочками, близкими к завершению. Это наглядно видно при сопоставлении температур плавления и кипения металлов 6-го периода (табл. 10). [c.37]

    Сильное различие в температурах плавления н кипения следует объяснить различием прочности химической связи между атомами в металлах. Исследования показали, что в чистом виде металлическая связь характерна лишь для щелочных и щелочноземельных металлов. Однако у других металлов, и особенно переходных, часть валентных электронов локализована, т. е. осуществляет ковалентные связи между соседними атомами. А поскольку ковалентная связь прочнее металлической, то у переходных металлов температуры плавления и кипения, как это видно из рис. 5.4, намного выше, чем у щелочных и щелочноземельных металлов. [c.153]

    Ряд свойств переходных металлов — высокие температуры плавления и кипения, большая энтальпия атомизации, сравнительно малые межъядерные расстояния, высокая твердость — [c.184]

    Электронное состояние переходных металлов определяет ряд их физических свойств (температуры плавления и кипения, межатомные расстояния, прочность или твердость кристаллической решетки и т. п.). Для металлов 4-го периода прочность решетки возрастает от К, Са и Ti, V, достигает максимума у хрома, затем падает у Мп и вновь несколько растет в ряду Fe -)- o- Ni. При учете распределения с1- и 5-электронов в переходных металлах помимо указанных физических свойств большое значение придается магнитным свойствам. С современной точки зрения магнитные свойства металлов определяются -электронами с неспаренными спинами. Соответствующие магнитные моменты насыщения )J, для металлов 4-го периода имеют значения Сг 0,22 Мп 1,22 Ре 2,22 Со 1,71 N1 0,6(0,66). [c.147]

    В переходных металлах, характеризующихся высокими температурами плавления и кипения, а также высокими значениями энергии атомизации, основной вклад в энергетику связи вносит перекрывание -орбиталей с образованием ковалентных связей. Это особенно заметно для элементов середины вставных декад, атомы которых характеризуются максимальным числом холостых электронов (рис. 65). Даже полностью заполненные -орбитали нельзя [c.129]

    Внутри одной группы у непереходных металлов с увеличением атомного номера убывают температуры плавления и кипения, симбатно изменяются теплоты плавления и испарения. У переходных элементов, напротив, увеличение атомного номера сопровождается повышением температур плавления испарения, аналогично изменяются тепловые эффекты, связанные с фазовыми переходами. Так же как и отмеченные выше величины плотности, энергии связи в переходных металлах с большим атомным номером достаточно велики. [c.123]

    Большинство переходных металлов (с переменной валентностью) образует летучие галогениды с температурами кипения ниже 900° С и многие ниже 500° С. К несчастью, галогениды этих металлов очень реакционноспособны по отношению к обычно применяемым органическим жидким фазам. В то же время органические жидкие фазы в большинстве случаев улетучиваются или разлагаются при температурах, значительно превышающих 350° С (гл. VI), и, следовательно, их применение для разделения неорганических соединений ограничено. Кроме того, неорганические галогениды легко гидролизуются, вследствие чего необходимо обеспечить поддержание безводных условий в избранной жидкой фазе. По сообщению Фрейзера [57 ] частичное разделение низко-кипящих тетрахлоридов олова и титана (температуры кипения соответственно 114 и 136° С) может производиться на нереакционноспособном насыщенном углеводороде (к-гексадекане) при 102 С. В более поздней работе Келлер [95 ] исследовал хроматографическое поведение хлорида ниобия (V) и хлорида тантала (V) (температуры кипения соответственно 240,5 и 242° С) на колонке со скваланом при 200° С. Однако в обеих указанных работах температуры колонок были на 40—60° С выше рекомендуемых для примененных в них жидких фаз (гл. VI). Насыщенные углеводороды, по-видимому, можно будет применять только при разделении низко-кипящих неорганических галогенидов. [c.403]


    Метод дистилляции применяют для получения и очистки прежде всего наиболее летучих металлов, таких, как К, На, Ы [62], Hg (ср. разд. 1.9, стр. 55), С(1, 2п, М , Са, 5г, Ва, а также Мп — особо летучего, что объясняется его средним положением среди переходных элементов. Сравнительно летучими являются РЬ, Ag и Т1, а также те элементы, которые близки к неметаллам, такие, как В1, 5Ь и Аз. В приложении к данной книге приведены кривые давления пара сравнительно легколетучих металлов, из которых видна определенная последовательность в их летучести в табл. 48 приведены температуры кипения при давлении 1 мм рт. ст. труднолетучих металлов, которые еще можно очистить вакуумной перегонкой. [c.565]

    Получение и свойства кислорода. Обычный кислород состоит из двухатомных молекул Оз- Это бесцветный газ, не обладающий запахом, слабо растворимый в воде — 1 л воды при 0° и 1 атм растворяет 48,9 мл кислорода. Кислород конденсируется в бледно-голубую жидкость при температуре кипения —183,0° и при дальнейшем охлаждении замерзает при —218,4°, образуя бледно-голубое твердое кристаллическое вещество. В твердом, жидком и газообразном состоянии кислород обладает парамагнитными свойствами. Парамагнетизм явление редкое, парамагнитными свойствами обладают переходные металлы и их металлические соли большинство других веществ — диамагнитны. [c.100]

    В технических сплавах могут встречаться также соединения, состоящие из металлов, переходных и неметаллических элементов. Их температура кипения может быть выше температуры кипения соответствующих элементов, а энтальпия образования — достигать заметных величин. Так, например, существенную роль играет карбид железа (цементит), количество которого зависит от содержания углерода и характера тепловой обработки сталей. Увеличение содержания в сталях карбида железа приводит к снижению интенсивности спектральных линий железа [3, 4]. Это означает, что углерод, как третий элемент, оказывает влияние на анализ сталей. Идентичное мешающее влияние проявляется и при анализе хрома, которое тоже обусловлено образованием карбида [c.241]

    Экспериментальное изучение термохимии неорганических и органических соединений существенно различно. Если для органических соединений основной изучаемой в термохимии реакцией является сжигание веществ в кислороде, то для неорганических веществ такой преобладающей реакции или хотя бы группы реакций нет. Это вполне понятно, если учесть, что исследования по термохимии неорганических веществ охватывают вещества, очень резко различающиеся по своим химическим и физическим свойствам. Так, исследователям, работающим в этой области, приходится экспериментировать с веществами, которые имеют очень низкую температуру кипения ( постоянные газы) и очень высокую температуру плавления (например, окислы некоторых переходных металлов IV—VI групп), веществами, чрезвычайно агрессивными (фтор, щелочные металлы) и крайне инертными (благородные металлы и газы, кварц, четырехфтористый углерод), веществами, легко растворимыми во многих растворителях и практически не растворяющимися ни в одном из них, веществами неустойчивыми, легко разлагающимися, взрывчатыми, пирофорными, гигроскопичными и т. д. [c.131]

    Изменения температур плавления и кипения переходных металлов в пределах группы и периода характеризуются данными табл. 6. [c.13]

    Из этих данных следует, что максимальное число металлических связей образуют переходные металлы VI и VH побочных подгрупп и VOI группы, для которых характерны малые атомные радиусы, большие плотность и твердость, высокие температуры плавления и кипения, низкая летучесть, большое сопротив.тение разрыву п сжатию. [c.15]

    Поскольку ковалентная связь более прочна, чем металлическая, можно ожидать, что у переходных металлов температуры плавления и кипения, а также теплота атомизацпи, выше, чем у. .. п. .. металлов. [c.248]

    Температуры плавления и кипения. Температуры плавления и кипения ионных кристаллов выше, чем у молекулярных кристаллов и непереходных металлов. Их также трудно расплавить и испарить, как и переходные металлы, причем наблюдается очень хорошая корреляция температуры плавления с энергией решетки (табл. 4.22). Эта корреляция вполне естественна, так как плавление и испарение иоиного кристалла сопровождаются разрывом большого числа связей между ионами. Однако из этого правила есть и исключения. Например, для солей Li характерны низкие температуры плавления и кипения и большие величины Ul. Вероятно, это аномальное снижение температур плавления и кипения связано с увеличением сил отталкивания из-за небольшого расстояния между анионами, обусловленного тем, что отношение радиусов гм/гх меньше 0,4 L [c.199]

    Ряд физических свойств металлов, например температуры плавления и кипения, межатомное расстояние, поверхностная энергия, непосредственно связан с энергией когезии. Максимум значений теплот атомизации, температур плавления и кипения переходных металлов отвечает в основном области подгруппы У1Б, в то время как значения поверхностной энергии и плотности проходят через максимум, а межатомные расстояния— через минимум в области VIII группы периодической системы элементов. [c.12]

    В 1935 г. Рогинский, отмечая выдающуюся роль переходных элементов в катализе [166], указал возможность объяснения этой роли наличием особого типа взаимодействия, присущего атомам переходных металлов. Это взаимодействие представлялось как возникновение дополнительных химических связей, образованных с участием неспаренных электронов и электронных пробелов во внутренних -оболочках элементов. Допускалось, что этот тип связи может возникнуть и между разными атомами одного и того же переходного элемента (от чего зависят резкие различия в температурах кипения нормальных непереходных и переходных элементов). Существованием таких дополнительных -связей Трепнел [167] впоследствии объяснял особую прочность хемосор бции. [c.242]

    Наиболее обычными фторидами галогенов являются трехфтористый хлор (температура кипения 12°С), трехфтористый бром (температура кипения 128 °С) и пятифтористый иод (температура кипения 98 °С). Действие трехфтористого хлора в значительной степени напоминает действие элементарного фтора. Пятифтористый иод —мягкий фторирующий агент, находящий лишь небольшое применение в химии переходных металлов сообщалось, однако, что он превращает карбонил вольфрама в гексафторид, а смеси карбонила с иодистым калием — в комплексы KaWPg и KaWFs характер продукта зависит от соотно шения исходных веществ  [c.88]

    В наибольшей степени исследованы в настоящее время химические свойства карбидов переходных металлов IV-VI групп, особенно Ti , Zr , Hf , V , Nb , Ta , M02 , W , W2 . Ha примере синтетических порошков этих карбидов установлено, что они обладают высокой химической стойкостью в растворах НС1, H2SO4 и Н 04, а также в концентрированной НС1 на холоду и при температуре кипения [15, 17, 25, 28]. В концентрированной кипящей H2SO4 высокой [c.13]

    Процесс заключается в следующем. Пары МОС из испарителя поступают в реактор, где помещаются предметы, которые требуется покрыть слоем металла, нагретые до температуры, превышающей температуру разложения хроморганического соединения. При контакте с нагретой поверхностью происходит разложение МОС и образуется хромовая пленка. В связи с тем, что каждое из входящих в смесь хроморганических соединений обладает индивидуальной температурой кипения и давлением паров, а а также определенной температурой разложения, возникают трудности в поддержании требуемой концентрации паров металлоорганического соединения хрома в реакторе, а следовательно, и в постоянстве скорости образования хромового покрытия и, главное, в воспроизводимости электрофизических параметров, таких, как сопротивление хромовых пленок. В связи с этим при использовании бисареновых соединений переходных металлов для получения металлических покрытий термическим разложением возникает необходимость разделения этих соединений на индивидуальные вещества. [c.104]

    Большинство переходных металлов обладают высокими темпе-ратурало плавления и кипения, за исключением ртути — жидкой в обычных условиях, а также кадмия, цинка, лантана и серебра, температура плавления которых ниже 1000°. Самым тугоплавким и высококипящим переходным металлом является вольфрам. [c.13]


Смотреть страницы где упоминается термин Переходные металлы температура кипения: [c.225]    [c.269]    [c.10]    [c.543]    [c.10]    [c.225]    [c.457]    [c.196]    [c.26]    [c.137]    [c.123]    [c.181]    [c.32]    [c.264]   
Неорганическая химия Том 2 (1972) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы переходные

Металлы температуры кипения

Переходная температура



© 2025 chem21.info Реклама на сайте