Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика и механизм электрохимической коррозии металлов

    КИНЕТИКА И МЕХАНИЗМ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ [c.126]

    Исследование кинетики электродных реакций. Один из основных методов изучения механизма процессов электрохимической коррозии металлов и сплавов это построение и анализ поляризационных кривых, пользуясь которыми можно также определить ток коррозии и рассчитать коррозионные потери. [c.85]

    Такие вопросы теории и механизма электрохимической коррозии, как равновесные и стационарные электродные потенциалы, электрохимическая гетерогенность поверхности металла, кинетика катодного и анодного процесса, работа коррозионного элемента и пассивность рассмотрены в работах № 4—11. Особенности коррозии металлов в различных условиях службы, например кислотостойкость, подземная коррозия металлов, межкристаллитная и точечная коррозия сталей, коррозия сварных соединений, коррозионное растрескивание и усталость, иллюстрируются работами № 12—19. Современные методы коррозионных исследований даны в работе № 20, а также в работах № 5, 12, 14—19 при выполнении частных задач. [c.51]


    Электрохимия. В этом разделе исследуются свойства растворов электролитов, кинетика и механизм электрохимических реакций, протекающих на границе электролитов с твердыми телами, главным образом с металлами и др. В частности, в электрохимии исследуется механизм возникновения электродвижущей силы в гальванических элементах, электрохимическая коррозия металлов, процессы электролиза и т. д. [c.7]

    В настоящей работе испытания защитных свойств различных лаковых покрытий производятся электрохимическим способом, наиболее полно характеризующим электрохимическую коррозию и позволяющим исследовать ее кинетику при помощи простой установки. Механизм электрохимической коррозии, условия возникновения разности потенциалов на границе металл — раствор и коррозионных токов рассмотрены на стр. 236. [c.271]

    Современные представления об электрохимической коррозии металлов в средах, содержащих СОг, в отсутствии кислорода обобщены в работе [8]. Обсуждаются фундаментальные аспекты механизма коррозии, кинетические факторы и параметры, влияющие на равномерную и локальную коррозию, применительно к проблемам нефтяной и газовой промышленности. Скорость коррозии стали в среде, содержащей СОг, в отсутствии кислорода контролируется кинетикой выделения водорода по двум различным механизмам [9]  [c.5]

    Исследование кинетики отдельных ступеней электрохимической коррозии металлов и установление характера контроля в различных условиях протекания процесса коррозии. Изучение механизма защитного действия различных антикоррозионных мероприятий путем определения степени торможения ими отдельных ступеней коррозионного процесса. Установление связи коррозионной стойкости металлов и сплавов с электронным строением атома, т. е. с местонахождением данных металлов в Менделеевской таблице. Электрохимическое изучение структурной коррозии сплавов. Приложение теории дислокаций в атомных решетках к явлениям электрохимической коррозии реальных металлов и сплавов. Исследование кинетики электрохимических процессов при наличии на поверхности корродирующего металла тонких полупроводящих окисных или высокополимерных пленок, или других тонких слоев (например, [c.581]


    Даны современные представления о термодинамике и кинетике окисления металлов, механизме образования и законах роста различных пленок, рассмотрены механизм и различные виды электрохимической коррозии, описаны важнейшие методы исследования коррозионных процессов. [c.2]

    Коррозия является процессом химического или электрохимического взаимодействия металлов с коррозионной средой. Для установления механизма и общих закономерностей этого взаимодействия и разработки методов борьбы с ним необходимо знание свойств металлов и коррозионных сред, а также основных закономерностей химических и электрохимических процессов. Поэтому научной базой для учения о коррозии и защите металлов являются металловедение и физическая химия, в первую очередь такие ее разделы, как термодинамика и кинетика гетерогенных химических и электрохимических процессов. [c.10]

    Электрохимическая коррозия подчиняется законам электрохимической кинетики это окисление металла в электропроводных средах, сопровождающееся образованием и протеканием электрического тока. При этом взаимодействие металла с окружающей средой характеризуется и катодным и анодным процессами, протекающими на различных участках поверхности металла. Продукты коррозии образуются только на анодных участках. С электрохимическим механизмом протекают следующие виды процессов коррозии  [c.7]

    В книге рассмотрены основные понятия электрохимии и современные методы исследования кинетики электродных процессов. Описаны классические и релаксационные методики изучения электродной поляризации. Представлены специальные и вспомогательные приборы, применяемые в электрохимических исследованиях. Уделено внимание особенностям лабораторного эксперимента. В задачах установлены закономерности фарадеевских реакций, электропроводности растворов, чисел переноса, э. д, с. элементов, электрокапиллярных явлений и строения двойного электрического слоя, диффузионной кинетики и полярографии, механизма образования на электродах новой фазы, пассивности и коррозии металлов. [c.2]

    Электрохимическая коррозия — процесс, подчиняющийся законам электрохимической кинетики. В электролитах (кислоты, щелочи, морская вода, растворы солей и т. д.) разрушение металлов протекает по электрохимическому механизму он отличается от химического тем, что в этом случае имеет место перенос электрических зарядов (см. рис. 89, б) и всегда протекают две группы реакций катодная и анодная. [c.210]

    Влияние кислорода. Скорость коррозии металлов в нейтральных растворах существенно зависит от концентрации растворенного в коррозионной среде кислорода, который обеспечивает протекание катодной реакции. В большинстве случаев кислород поступает из атмосферы, и скорость коррозии в соответствии с механизмом диффузионной кинетики электрохимического процесса прямо пропорциональна его концентрации. Линейная зависимость наблюдается до тех пор, пока не будет достигнута достаточно высокая концентрация кислорода, после чего поверхность металла начинает пассивироваться. Содержание кислорода в коррозионной среде зависит как от состава и концентрации солей, так и от температуры, условий перемешивания и других факторов, определяющих его растворимость в данной среде. [c.25]

    Наука о коррозии и защите металлов изучает взаимодействие металлов и сплавов на их основе с коррозионно-активной средой, раскрывая механизм этого взаимодействия, его общие закономерности. Являясь процессом химического или электрохимического взаимодействия металла с коррозионной средой, она базируется на материаловедении и физической химии, в первую очередь на таких ее разделах, как термодинамика и кинетика гетерогенных химических и электрохимических процессов. Конечной ее целью является разработка практических мероприятий, обеспечивающих долговечную и надежную работу различного вида технологического оборудования и конструкций в самых разнообразных условиях эксплуатации. [c.4]

    Согласно современным представлениям [214, 128, 578, 494], металлы в растворах электролитов растворяются преимущественно по электрохимическому механизму. Подход к анодному растворению металлов и коррозии с единых позиций теории электрохимической кинетики, применение для изучения коррозии электрохимических методов исследования углубили и расширили теоретические представления об этих процессах, и на их основе стали возможны предварительные оценки коррозионной стойкости металлов и сплавов в различных условиях, разработки принципов коррозионной защиты материалов. Однако коррозионная наука в последние три десятилетия развивалась в основном применительно к водным растворам. Особенности процессов анодного растворения и коррозии металлов в органических электролитах изучены недостаточно, хотя необходимость таких сведений в связи со всевозрастающей ролью органических растворителей в качестве технологических средств очевидна. [c.106]


    Все ингибиторы, применяемые для борьбы с коррозией металлов в кислотах, объединены под общим названием ингибиторы кислотной коррозии . Ингибиторы кислотной коррозии были предметом многочисленных исследований, но, тем не менее, как будет ниже показано, механизм их действия остается до конца не выясненным. Используемые для объяснения действия этих ингибиторов две теории — адсорбционная, с помощью которой пытаются действие органических ингибиторов связать с экранирующим эффектом адсорбционных органических пленок, и энергетическая , с помощью которой стремятся действие ингибиторов свести к влиянию, которое адсорбированные слои оказывают на кинетику электрохимических реакций, — не в состоянии объяснить совокупность накопившегося экспериментального материала. [c.108]

    Хотя электрохимический механизм грунтовой коррозии исследован довольно глубоко, однако сложность проблемы настолько велика, что уровень науки пока еще не позволяет объяснить и математически выразить закономерности, точно определяющие кинетику процессов грунтовой коррозии при длительной эксплуатации металлов. В настоящее время ощущается острая необходимость хотя бы в приближенных способах оценки опасности коррозии подземных сооружений. [c.16]

    Как видно из изложенного материала, в литературе имеются сведения об образовании НВЧ при процессах разряда-ионизации металлов, однако практически отсутствуют работы, посвященные количественным закономерностям накопления НВЧ, систематические данные о зависимости их концентрации от потенциала и тока при поляризации электрода и какие-либо выводы о механизме электродных реакций, основанные на количественном рассмотрении этой зависимости не рассматривается также возможность определения кинетических параметров стадийных электродных реакций из таких зависи.мо-стей. Наконец, не выяснен полностью вопрос о критериях, позволяющих отличать НВЧ, являющиеся промежуточными продуктами стадийного процесса, от НВЧ, представляющих собой конечный продукт побочной электрохимической или химической реакции. Между тем, как будет показано ниже, в условиях, когда концентрация НВЧ доступна измерению, определение ее зависимости от потенциала и тока поляризации открывает новую возможность исследования кинетики и механизма сложных электрохимических реакций, сопровождающихся образованием НВЧ. Следует отметить, что изучение этой зависимости представляет и практический интерес, например, для выяснения закономерностей коррозии металлов путем окисления их НВЧ [22] и образования шлама при электролитической рафинировке металлов в растворах и расплавах, при использовании в аналитических целях анодного растворения металлических осадков в нестационарных условиях после их [c.70]

    Электрохимия является разделом физической химии, в котором изучаются закономерности, связанные с взаимным превращением химической энергии в электрическую и наоборот. Электрохимия изучает термодинамику и кинетику электродных процессов и свойства растворов электролитов. Закономерности электрохимии — теоретическая основа для разработки многих технологических процессов получения электролизом хлора, солей и щелочей, получения и очистки цветных и редких металлов, электросинтеза органических соединений, гальванотехники, создания химических источников тока. Электрохимия имеет большое значение для понимания механизма и кинетики электрохимической коррозии и выбора мер борьбы с коррозией металлов в электролитах.В науке и технике широко распространены электрохимические методы исследования и контроля производственных процессов полярография, кондуктометрия, электроанализ, электрохимическое измерение поляризации и др. [c.132]

    Процесс коррозии металлов в электролитах, как правило, имеет электрохимическую природу, т.е. подчиняется основным законам электрохимической кинетики. В то же время известны случаи, когда на отдельных стадиях коррозии или параллельно с электрохимическим процессом имеет место химический механизм коррозии металлов. [c.17]

    Влияние кислорода. Скорость коррозии металлов в нейтральной среде существенно зависит от концентрации растворённого в коррозионной среде кислорода, который обеспечивает протекание катодного процесса. Источником кислорода в подавляющем большинстве случаев является воздух. Влияние кислорода на коррозию косвенно наблюдается на рис. 35. Более четко эта связь видна на рис. 36, на котором показана зависимость скорости коррозии стали в дистиллированной воде от содержания в ней кислорода. Скорость коррозии прямо пропорциональна концентрации кислорода, что отвечает механизму диффузионной кинетики электрохимического процесса. Прямая зависимость наблюдается до тех пор, пока слишком высокая концентрация кислорода не приводит к пассивации поверхности металла. Содержание кислорода в коррозионной среде [c.67]

    Курс состоит ИЗ трех основных частей химическая коррозия, электрохимическая коррозия и методы защиты металлов от коррозии. Кроме того, большое внимание уделено термодинамике, кинетике и механизмам электродных реакций на металлах, а также локальным коррозионным процессам. Основные научные положения проиллюстрированы на конкретных видах коррозии и способах защиты от нее. [c.7]

    Обоснование электрохимического механизма коррозионного разрушения металлов в коррозионных средах, обладающих ионной проводимостью, и установление количественной связи между скоростью электрохимической коррозии и кинетикой электродных процессов. [c.5]

    На кинетику, скорость и механизм электрохимической коррозии влияют свойства металла, нефтепродуктов, а также температура, время, давление, скорость движения среды, присутствие замедлителей коррозии. В атмосфере воздуха, воды и нефтепродуктов, содержащих коррозионно-активные компоненты, большинство металлов неустойчиво, в том числе железо,и медь, являющиеся основными компонентами конструкционных материалов технических средств складов и нефтебаз. Коррозионная стойкость металла не определяется его положением в периодической системе. Большинство наименее устойчивых металлов расположены в I группе периодической системы Ыа, К, НЬ, Сз, а наиболее устойчивые находятся в УИ1 группе Кб, Оз, 1г, Р1, однако и в I группе имеются стойкие ко многим агрессивным веществам металлы (Аи, Ag, Си), а в УИ1 есть металлы, легко поддающиеся коррозии (Ре). Коррозионная стойкость металлов не зависит от их положения в ряду напряжений. Так, алюминий Е = = —1,67 В) и свинец Е = 0,12 В) устойчивы в разбавленной серной кислоте, а железо Е = 0,44 В) неустойчиво. В растворах едкого натра глюминий неустойчив, а магний и железо относительно устойчивы и т. д. [c.112]

    Кинетическое истолкование явлений электрохимической коррозии было впервые предложено А. Н. Фрумкиным (1932), который обратил внимание на то, что процесс разложения амальгам щелочных металлов подчиняется законам электрохимической кинетики. Эта идея была развита затем количественно Вагнером и Траудом (1938), которым удалось показать хорошее согласие теории с экс-периментальными данными по скоростям разложения амальгам Цинка. Близкие взгляды были высказаны А. И. Шультиным, Я- В. Дурдиным и рядом других авторов. Плодотворность использования закономерностей электрохимической кинетики для количественного описания коррозии твердых металлов была показана Я. М. Колотыркиным, а также В. В. Скорчеллетти, М. Грином и др. Работы этих ученых оказали значительное влияние на развитие современных взглядов на процессы коррозии и способствовали установлению связи между электрохимической наукой и учением о коррозии металлов. Кинетическую теорию коррозии часто неудачно называют гомогенно-электрохимической теорией или гомогенно-электрохимическим механизмом коррозии. К процессу коррозии, всегда протекающему на границе раздела минимум двух фаз, т. е. по своей природе типично гетерогенному процессу, не следует применять термин гомогенный . Правильнее называть эту теорию коррозии кинетической теорией. [c.493]

    Определение влияния на силу тока коррозионного элемента соотношения площадей анодной и катодной зон представляет простой и удобный в экспериментальном отношеггии способ проверки электрохимического механизма коррозии металлов в растворах электролитов. Характер такого влияния может быть количественно выражен, исходя из основных положений кинетики электрохимических процессов, протекающих на аноде и катоде коррозионного элемента при его работе. Наобходимо, однако, сделать определенные допущения относительно конкретных условий работы коррозионного элемента. Если, в частности, полностью исключить диффузионные ограничения, то для металлов с небольшим током обмена по собственным ионам общее условие стационарности определяется формулой (9.6), в которое входит величина анодной зоны поверхности и катодной зоны 5 . Для последу ющего целесообразно принять за единицу сумму поверхности анодной и катодной зон, положив, что = Вд, 5 = 6 , и что 0 + 0 , = 1. При этом Вд и В соответственно будут иметь смысл безразмерной величины доли поверхности анода и катода. Примем во внимание, что [c.255]

    Наряду с этим направлением возникла совершенно иная концепция в трактовке явлений электрохимической коррозии, вытекавшая из положений кинетики электродных процессов. Этот подход позволил совершенно по-новому подЬйти к механизму саморастворения металлов с идеально однородной поверхностью вначале на примере амальгам щелочных металлов и цинка. Далее получили отчетливую электрохимическую интерпретацию процессы саморастворения таких твердых металлов, как кадмий, свинец, никель, железо. В предыдущих разделах этой главы показано, что исходной предпосылкой при этом является утверждение о возможности одновременного протекания на поверхности металла нескольких электрохимических процессов с присущими каждому из них кинетическими закономерностями. [c.142]

    Установление доминирующей роли электрохимического механизма для подавляющего числа практических случаев коррозии металлов и сплавов позволяет в полной мере применить основные законы электрохимической кинетики к анализу, расчетам и прогнозам коррозии. Исходя из электрохимической трактовки, реально устанавливающаяся скорость термодинамически возможного процесса будет определяться кинетикой (скоростями) анодного и катодного процессов, зависящих, как известно, от устанавливающихся электрохимических потенциалов. В конечном итоге зависимость скорости коррозии (5), пропорциональная плотности коррозионного тока х), может быть представленЗ графически, на так называемой поляризационной диаграмме, представляющий зависимость скоростей анодного и катодного процессов от потенциала (рис. 3). На этой диаграмме плотность коррозионного тока 1х определяют по точке пересечения анодной АА и катодной КК поляриза- [c.28]

    Ускоренные атмосферные испытания. Лабораторные методы исследования атмосферной коррозии были разработаны раньше многих других лабораторных методов коррозионных испытаний и продолжают непрерывно совершенствоваться. Это можно объяснить, с одной стороны, тем, что в практике атмосферной коррозии подвергается около 80% металлических конструкций и доля коррозионных потерь при атмосферной коррозии превышает половину общих потерь [52], а с другой, тем, что механизм атмосферной коррозии является сложным и изучен далеко не полностью. Несмотря на кажущуюся простоту, воспроизведение в лаборатории условий атмосферной коррозии встречает определенные трудности, которые в значительной мере связаны с тем, что атмосферной стойкости вообще не существует, ибо одни и те же металлы в разных местах корродируют по-разному, так, например, коррозионная стойкость железа может изменяться в зависимости от атмосферы примерно в сто раз [3]. Большое значение имеет влажность воздуха, количество осадков, характер и количество загрязнений, температура и другие факторы. В зависимости от соотношения этих факторов естественную атмосферу делят на сельскую, городскую, индустриальную, сельскую морскую, городскую морскую, морскую, тропическую и тропическую морскую. Подробная характеристика этих типов атмосфер приводится в работе [5]. В соответствии с механизмом процесса атмосферная коррозия классифицируется [52, 53] на мокрую (относительная влажность воздуха около 100%), влажную (относительная влажность ниже 10%) и сухую (полное отсутствие влаги на поверхности металла). В двух первых случаях коррозия шротекает в соответствии с законами электрохимической, а в третьем—в соответствии с законами химической кинетики. Часто их трудно разграничить. В этой связи одним из первых условий воспроизведения в лаборатории атмосферной коррозии является создание на поверхности металла тонкой пленки влаги, имеющей постоянную или переменную толщину. Последнее, по-видимому, более точно отвечает практике. Такие условия в лаборатории достигаются с помощью влажных камер, приборов переменного погружения или солевых камер. Наиболее простая влажная камера — обычный эксикатор, на дно которого налита вода (рис. 13). [c.64]

    Как показано в работах А. Н. Фрумкина и его школы, Л. И. Антропова, а в последнее время также в работах С. А. Балезина, Н. И. Подобаева, В. П. Григорьева, В. В. Кузнецова, Ю. В. Федорова и других, именно подход, основанный на достижениях теории кинетики электродных реакций, может служить основой решения вопроса о механизме влияния ПАВ на коррозионные процессы. Иначе говоря, вопрос о механизме ингибирования кислотной коррозии металлов должен рассматриваться как часть более общей теоретической проблемы — влияние ПАВ на кинетику электрохимических процессов. [c.27]

    Химическая коррозия подчиняется основным законам чисто химической кинетики гетерогенных реакций и относится к случаям коррозии, не сопровождающимся электрическим током (например, коррозия в неэлектролитах или сухих газах). Элек-фохимическая коррозия подчиняется законам электрохимической кинетики и относигся обычно к случаям коррозии с возможностью протекания электрического тока (например, коррозия металлов в электролитах). Более глубокое различие механизмов коррозии этих двух типов будет рассмотрено ниже. [c.14]

    Выяснение связи между величиной поляризации и скоростью электродного процесса является важнейшим методом изучения электрохимических процессов. При эюм результаты измерений обычно представляют в виде поляризационных кривых — кривых зависимости плотности тока на электроде от в( личины поляризации. Вид поляризационной кривой того или иного э.пектродного процесса отражает особенности его протекания. Методом поляризацпонных кривых изучают кинетику и механизм окислительно-восстановнтелъных реакций, работу гат.ванических элементов, явления коррозии и пассивности металлов, различные случаи электролиза. [c.288]

    При рассмотрении кинетики коррозионных процессов в растворах электролитов до сих пор принималось, что процесс в основном протекает по электрохимическому механизму, так как скорость коррозии по химическому механизму (т. е. прямому взаимодействию окислителя с металлом) мала. Это положение соблюдается для большинства процессов коррозии. Однако советским ученым Я. М. Колотыр-киным с сотр. было установлено, что некоторые металлы (железо и хром) в растворах некоторых кислот (например, НС1) могут корродировать по химическому механизму с более высокими скоростями, чем по электрохимическому механизму. [c.217]


Смотреть страницы где упоминается термин Кинетика и механизм электрохимической коррозии металлов: [c.13]    [c.53]    [c.5]    [c.106]    [c.532]    [c.33]    [c.120]    [c.172]    [c.465]    [c.2]    [c.17]   
Смотреть главы в:

Электрохимические основы теории коррозии металлов -> Кинетика и механизм электрохимической коррозии металлов




ПОИСК





Смотрите так же термины и статьи:

Кинетика электрохимическая

Кинетика электрохимической коррозии

Коррозия металлов

Коррозия металлов коррозии

Коррозия металлов механизм

Коррозия металлов, электрохимическая

Коррозия электрохимическая

Механизм электрохимической коррозии металлов

Электрохимический механизм

Электрохимический ряд металлов



© 2025 chem21.info Реклама на сайте