Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропен кислот

    Свойства жирных кислот начинают появляться у карбоновых кислот, когда в их молекулах содержится три или более атома углерода. Такая кислота с тремя атомами углерода называется пропио-новой от греческих слов, означающих первый жир . Этот же корень мы находим и в названии трехуглеродного углеводорода пропана. [c.158]

    Промышленное нитрование пропана, имеющее в настоящее время первостепенное значение, осуществляется следующим образом. Пропан под давлением 7 ат нагревается до температуры 430—450° и в изолированном реакторе приводится в соприкосновение с потоком тонко распыленной 75%-ной азотной кислоты. Азотная кислота подается через насадки (жиклеры) в различные точки потока пропан-газа (рис. 70). Насадки расположены таким образом и количество подаваемой через них кислоты дозировано так, чтобы теплота испарения кислоты полностью компенсировала теплоту реакции нитрования. В то- [c.126]


    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]

    Гидратация низкомолекулярных олефинов, особенно этилена, пропена и бутенов, в спирты может производиться двумя способами. При непрямой гидратации олефин обрабатывают серной кислотой, ири этом образуется алкилсульфат, который затем гидролизуется с образованием спирта и серной кислоты  [c.199]

    Выход продуктов реакции (в %), получаемых в одинаковых условиях газофазного нитрования этана, пропана, н- и изобутана, приведен в табл. 9 3. Здесь же приведен также выход за проход, рассчитанный по азотной кислоте, который показывает, сколько получается нитропарафина, из 100 частей азотной кислоты за один проход через реакционный сосуд. При этом избраны не наилучшие условия нитрования однако из таблицы видно, как улучшается нитрование с повышением молекулярного веса углеводородов. [c.293]

    Для получения упомянутых жирных кислот пригодны только первичные нитропарафины, вторичные же нитропроизводные при воздействии серной кислоты в условиях процесса осмоляются. Ввиду того, что при газофазном нитровании пропана и н-бутана наряду с первичными образуются также значительные количества вторичных нитросоединений, необходимо оба изомера предварительно разделить ректификацией. [c.338]


    Теоретически из метана можно получить лишь три продукта окисления метанол, формальдегид и муравьиную кислоту наиболее желаемым из них является формальдегид. Но при окислении пропана и бутана получается большое число различных кислородных соединений, разделение которых и переработка в чистые продукты требуют многих стадий. [c.433]

    Окисление пропана кислородом (7,9% в смеси) при 170 ат и 350 " приводит к образованию метанола, этанола, пропанола, ацетальдегида, формальдегида, ацетона, уксусной и муравьиной кислот [5]. Давление при окислении пропана, -по-видимому, благоприятствует атаке кислорода по метиленовой группе (табл, 116). [c.434]

    Они нашли, что парафиновые углеводороды с третичным атомом углерода, например изобутан, уже прн 160 гладко окисляются в присутствии бромистого водорода, давая трег-бутилгидроперекись с выходом 75%. Для окисления вторичных атомов углерода требуется 190°, а для первичных — 220°. При этом из пропана получают с 75%-ным выходом ацетон, а из этана получают с тем же выходом уксусную кислоту. [c.440]

    Поскольку Шорлеммер исходил из пропана, полученного восстановлением хлористого изопропила цинком с соляной кислотой, он видел возможность перейти от вторичных спиртов к первичным по следующей схеме  [c.533]

    При фтористоводородном алкилировании продукты реакции уходят из отстойника в жидкой фазе (рис. 1У-28) [25]. По варианту а жидкая фаза поступает в отпарную изобутановую колонну, из которой боковым погоном в паровой фазе отбирают н-бутан и из куба—алкилат. Изобутан и пропан с верха отпарной колонны поступают на разделение в пропановую колонну. Следы фтористоводородной кислоты отпаривают в отпарной колонне от пропана и рециркулируют вместе с изобутаном в реактор. По варианту б продукты реакции поступают в сложную пропан-изобутановую колонну, с верха которой отбирают пропан, боковым погоном в жид- [c.238]

    Химические свойства окиси пропи.лена подобны свойствам окиси этилена. Она тоже реагирует с соединениями, имеющими активные атомы водорода, например с водой дает пропиленгликоль. Гидратация окиси пропилена легко идет при обычной температуре в присутствии щавелевой кислоты в качестве катализатора, которую впоследствии легко можно выделить в виде оксалата кальция. Реакция про- [c.84]

    Для идентификации пропил- и изопропилбензола фракции с т. кип. 151 — 155° и 156—160° окислялись по Ульману [7]. Из продуктов окисления была выделена и идентифицирована бензойная кислота, которая после двухкратной перекристаллизации плавилась при 119—120°. Смешанная проба бензойной кислоты с синтетической депрессии не дала. [c.58]

    Пропев-2 нитрил (акрилонитрил, цианистый винил, нитрил акриловой кислоты) [c.335]

    Так получают, например, дихлорид пропилфосфоновой кислоты, пропуская кислород через жидкую смесь пропана с треххлористым фосфором при —40°. Хлор в таких соедипениях отличается ис1 лючительной реакционной способностью. Эти соедииоппя легко вступают в реакции с амннами, алкоголятами, фенолятами и т. п. [c.145]

    Окисление низкомолекулярных, газообразных при нормальных условиях парафиповых углеводородов осуществлено на нескольких больших установках США. Окисление относится к числу типичных нефтехимических процессов. Целью его в настоящее время при использовании в качестве исходного сырья пропана и бутана является получение формальдегида и уксусной кислоты, вернее уксусного ангидрида важнейшим промежуточным продуктом п большинстве случаев является ацетальдегид. [c.150]

    Ацетальдегид и формальдегид, получаемые окислением пропана или бутана, являются сырьем для получения нентаэритрита, в 1956 г. его было произведено в США 70 тыс. т [64]. Он применяется главным образом в производстве искусственных смол (алкидные смолы). Небольшое количество его используется в производстве взрывчатых веществ. Интересное применение находит ацетальдегид в виде паральдегида для получения метилэтил-пиридина, который каталитическим дегидрированием может быть превращен в метилвинилпиридин [65]. На рис. 93 представлены основные пути использования ацетальдегида, а на рис. 94 — то же уксусной кислоты. [c.158]

    Из пропана в этих условиях получается ацетон с 75%-ным выходом, из этана с таким же выходом — уксусная кислота. Промышленное значение имеет ди-трет-бутилперекись, применяемая как катализатор полимеризации и как присадка к дизельным топливам. Ди-трет-бутилнерекись образуется в результат( конденсации тре/тг-бутилгидронерекиси с трет-бутило-вым спиртом в уксуснокислой среде  [c.161]

    Продукты реакции охлаждают и в ректификационной колонне нри температуре верха колонны —40° отделяют хлористый водород п пропен от хлористого аллила и других хлорпроизводных углеводородов. Из смеси пропена с хлористым водородом последний отмывают водой, получая в результате 32%-ную соляную кислоту. После длительной промывки для удаления следов хлористого водорода нронен возвращается в процесс. [c.170]

    Покидаюя1,ий абсорбер экстракт содержит иа 1 моль серной кислоты около 1,1 —1,3 моля пропена. Для получения 10 л 100%-ного изопропилового спирта расходуется около 12 кг серной кислоты. [c.202]


    При применении давления 7 ат нитрометан образуется с выходом 48% из расчета на израсходованпую азотную ислоту. Хэсс и Бойд проводили процесс при 475°, времени пребывания 0,2 се . и молярном отношении углеводород азотная кислота, равном 10 1. Оптимальный выход в опытах при нормальном давлении за один проход составлял 12% в расчете на аз-отную кислоту. Аппаратура в принципе аналогична аппаратуре, применяемой при нитровании пропана и бутана. [c.288]

    При нитровании двуокисью азота очень существенно, чтобы время контактации было продолжительным для достижения почти таких же выходов, как и при нитровании с парами азотной кислоты. Английские ученые, исследовавшие этот способ нитровация с промышленной точки зрения, считают его превосходным. При этом способе лу 1ше контролируется температура, процесс происходит циклично, т. е. окислы азота и неиспользованный парафиновый углеводород возвращаются обратно в реакцию. При нитровании пропана двуокисью азота при 360° и 10 ат давления продукт реакции содержит 20—25% нитрометана, 5—10% нитроэтана, 45—55% 2-нитропропана и 20% 1-нитропропана. Выход в расчете на пропан составляет 75—80% и свыше 90% в расчете на двуокись азота [108]. 2,2-динитропропана образуется в количестве 1% от yiMMbi нитропарафинов. [c.296]

    Точные и подробные сведения о промышленном газофазном нитровании низкомолекулярных парафиновых углеводородов до настоящего времени в литературе отсутствуют. В последнее время Файт и его сотрудники [111] опубликовали более подробные данные о промышленном нитровании пропана. Пропан нагревают до 430—450° и помещают в изолированный реактор под давлением около 7 ат, где он смешивается с потоком 757о-пой мелко распыленной азотной кислоты. Азотная кислота подается форсунками, находящимися в различных местах потока пропана. Расстановка форсунок и количество впрыскиваемой кислоты дозированы так, что теплота испарения достаточна для компенсации тепла, выделяемого при реакции. Этим достигается широкое тем- [c.297]

    Лишь значительно позже этому открытию было уделено необходимое внимание в 1949 г. Хэсс и Александер [113] и в 1952 г. Бахман, Хэсс и Аддисон опубликовали подробные сведения о влиянии добавки кислорода на нитрование пропана и н-бутана азотной кислотой и двуокисью азота. При нитровании азотной кислотой с добавкой кислорода реакция превращения значительно ускоряется, но конеч-ный выход нитропарафинов сильно падает. Если же увеличить соотношение поверхности к объему реактора -или ввести водяной пар, то выход будет удовлетворительным по отнои1 нию к прореагировавшему углеводороду. При нитровании двуокисью азота добавка кислорода ускоряет. превращение и увеличивает выход. При этом время пребывания при нитровании можно значительно сократить. Добавка кислорода при нитровании с двуокисью азота благоприятно влияет на нитрование, чем при при- ленении азотной кислоты. [c.298]

    Изучение литературы, посвященной галоидированию углеводородов, начиная с пропана, у которого могут появиться два изомерных продукта монозамещения, показывает значительные отклонения от состояния современных знаний. Еще в 1869 г. Шорлеммер оспаривал образование хлористого пропила при прямом хлорировании пропана [5], так как получил при взаимодействии продукта реакции (моно-хлорпропана) с ацетатом натрия и ледяной уксусной кислотой при 200 лишь н-пропилацетат, который омылил в н-пропиловый спирт. Последний был идентифицирован окислением в пропионовую кислоту. [c.533]

    КОЙ фазе выше ввода сырья отбирают циркулирующий изобутан и с низа— стабильный алкишат. Дебутанизация алкилата проводится в полной ректификационной колонне следы фтористоводородной кислоты из пропана удаляются в отпарной колонне. [c.239]

    Экстракцию пропилена из смеси пропан — пропилен и извлечение изобутилена из смеси углеводородов С4 можно осуществить адсорбцией в серной кислоте. Однако в промышленности этот метод применяется фирмой Standard Oil [8] только при получении изо- бутилена. Описано [9] введение пропана и пропилена после сжи-желия в 75%-ную серную кислоту при 40 °С. При этом пропилен удается удержать в виде гидросульфата, который позже может быть удалей путем гидролиза водой при 80 °С. [c.50]

    II — испарители 2 — абсорбер (25 кгс/см ) з — сборник для смеси пропилсульфата и серной кислоты 4 — скруббер для пропана 5, я, 12 — холодильники в — колонна для отгонки спирта 7 — скруббер Ю — сборник 13 — резервуар для 70%-но серной кислоты  [c.59]

    Изучение окисления пропилена на катализаторе УзОа—А1зОз прп 240—320 С свидетельствует о понижении выхода акриловой кислоты с повышением температуры, оптимальная температура 2 0 —260 °С (выход 16—18%) [142]. Выход других кислот (пропио-новой, уксусной) уменьшается, а количество акролеина (2—6%) остается постоянным по всему диапазону температур. С возрастанием температуры резко уменьшается образование побочных продуктов. [c.158]

    Самый высококачественный алкилат с минимальным расходом кислоты получается при реакции изобутана и олефина в отношении 1 1. Потери возникают в результате полимеризации олефинов и самоконденсации изобутана при одновретиенном образовании пропана [24]. [c.257]

    Пропилбензол и изопропилбензол окислялись и идентифицировались в качестве бензойной кислоты. Нахождение пропил- и изопропилбензола во фракции 122—150° не противоречит лнтературным данным. Как известно, углеводород целиком не переходит в соответствующую фракцию. Так, например, толуол в основном переходит во фракции 95—122°, но его можно обнаружить также во фракциях 122—150° и [c.17]

    Функция кислотности использовалась для анализа кинетических дан-НГ.1Х по катализированным кислотой реакциям в концентрированных растворах [60]. Лонг и Пурчез [62[ нашли , что скорость гидролиза р-пропио-лактона в концентрированных водных растворах Н2304 и НСЮ4 первого порядка по лактону и пропорциональна кд. Обш ее уравнение реакции  [c.496]


Смотреть страницы где упоминается термин Пропен кислот: [c.220]    [c.220]    [c.249]    [c.127]    [c.22]    [c.176]    [c.266]    [c.287]    [c.295]    [c.296]    [c.58]    [c.77]    [c.259]    [c.145]    [c.415]    [c.336]    [c.342]    [c.443]   
Изотопы в органической химии (1961) -- [ c.564 ]




ПОИСК





Смотрите так же термины и статьи:

Пропей

Пропен



© 2024 chem21.info Реклама на сайте