Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уксусная кислота реакции с мочевиной

    Аналогичная реакция может быть осуществлена обработкой амидов тетраацетатом свинца [216]. В этом случае первоначально возникающий изоцианат и образующийся из него амин реагируют с уксусной кислотой, выделяющейся из тетраацетата свинца, давая мочевины и амиды соответственно. Если реакцию проводят в присутствии спирта, образуются кар-баматы (т. 3, реакция 16-8)  [c.157]


    Для того чтобы регенерировать [5] нитропарафины из их щелочных солей, применяют раствор мочевины в водной уксусной кислоте. Эффективность этого реагента обусловлена его слабой кислотностью и, следовательно, способностью подавлять реакцию Нефа и быстро разрушать активную азотистую кислоту. [c.482]

    Ледяная уксусная кислота, а еще р, б о л ь ш е u степени уксусный ангидрид при нитровании также служат для связывания образующейся в процессе реакции вод ьп. Так, Ортон о ддя получения нитраминов из ароматических аминов применял смесь азотной кислоты, уксусной кислоты и уксусного ангидрида. Азотная кислота не должна при этом содержать азотистой кислоты, для чего к ней предварительно прибавляют мочевину нли азотнокислую мочевину (стр. 199). [c.274]

    Например, мочевина, обладающая в водных растворах свойствами очень слабого основания, проявляет себя в растворе в жидком аммиаке как кислота, а в растворе в безводной уксусной кислоте — более сильным основанием, чем в воде. Следовательно, мочевина, реагирующая как слабое основание в водных растворах, способна в жидком аммиаке вступать в реакции с основаниями, а в безводной уксусной кислоте — с кислотами. [c.348]

    Описано несколько реакций 1,3-диметилолмочевины, в которых принимает участие лишь один из реакционных центров [36—40]. Так, например, в случае 4-нитрофенола в серной кислоте, разбавленной ледяной уксусной кислотой, получают несимметрично замещенную мочевину 3 [40]. [c.74]

    Арилиден-1,2,4-триазин-6(1Н)-оны вступают в реакции, характерные для а, р непредельных карбонильных соединений с различными производными гидразина, гидроксиламина, тио-мочевиной и др. В результате взаимодействия выделяют различные продукты, представляющие сложные конденсированные системы [590]. В зависимости от применяемого агента условия реакции различны. Например, реакцию с гидразингидратом проводят кипячением в уксусной кислоте реакцию с диазоал-канами в этаноле реакцию с гидроксиламином или тиомочеви-ной — при кипячении в спиртовой щелочи (КОН)  [c.150]

    Мочевина лучше всего открывается реакцией на уреазу, как описано в следующем отделе. Как дополнительная операция может быть полезен метод Fosse a(Ann. him, б, 13 [1916]). Раствор мочевины обрабатывают в 3,5 раза большим объемом ледяной уксусной кислоты и затем половинным объемом раствора -ксантгидрол а (10%) в метиловом спирте. Получается белый кристаллический осадок ксантил-мочевины. Реакция имеет сомнительную ценность в присутствии цианамида.  [c.100]


    По методу Витта и Утермана, в раствор 45 г ацетанилида в 22 г ледяной уксусной кислоты при охлаждении вливают раствор 23 г азотной кислоты (уд. в. 1,5) и 1 г мочевины в 23 г ледяной уксусной кислоты смесь оставляют на 24 часа. Выделение сырого продукта реакции и разделение изомеров производят следующим образом к реакционной смеси добавляют 360 г льда и выпавший осадок, состоящий из смеси о- и п-ни-троацетанилидов, обрабатывают спиртовым раствором едкого кали при этом омылению подвергается лишь о-нитр о ацетанилид, а п-изомер остается без изменения. Основным продуктом реакции (в отличие от нитрования азотной кислотой в отсутствие уксусной кислоты) является о-нитроацетанилид(отношениеколи-честв о- и п-изомера равно 3 1). Общий выход нитропроизводных (в виде сырого продукта) составляет 87% от теоретического. [c.54]

    Большое влияние на процесс нитрования оказывает растворитель, о чем мы вкратце упоминали и ранее. Из работ, заслуживающих внимания в этом отношении, отметим исследование Холстеда и Ламбертона [65]. Онй изучали реакцию нитрования й различных растворителях без серной кислоты. Ими показано, что реакция нитрования уретайй, метилуретана и мочевины необратима в среде уксусная кислота — уксусный ангидрид. [c.178]

    При нитровании уретана, метилуретана и мочевины в среде с отношением (СНзСО)гО СНзСООН = 24 1 при 25° в течение 1 часа выходы нитросоединений достигают 60—80%. При нитровании уретана при 25° в течение 20 час. в средах с отношением (СНзСО)20 Hj OOH = 1 1 и 1 19 выходы нитросоединений составляли, соответственно, 80 и 40%. В системе уксусная кислота — вода с отношением СНзСООН Н2О = == 199 1 нитрование не происходит. При растворении соответствующих нитрамидов в указанных выше растворителях свободной азотной кислоты не обнаружено. Реакция нитрования уретана в 60%-ной H IO4 обратима. Положение равновесия для уретана при 70° достигается через 20 мин. Выход нитро-уретана 53%. [c.178]

    З-карбоксипиперидона-2 (V) приливают охлажденный до —2°С водный раствор п-метоксифенилдиазоний хлорида, приготовленного путем диазотирования 196 г перекристаллизованного из этилового спирта п-анизидина (VII) [диазотирование проводят постепенным добавлением к VII, растворенному в смеси 1,85 л воды и 706 мл 27% соляной кислоты, 485 мл раствора нитрита натрия, содержащего 20 г/л основного вещества, поддерживая pH раствора 1,0, температуру — 2 — (+2°С) и контролируя конец процесса по йодкрахмальной бумажке избыток нитрита натрия разлагают приливанием 50% раствора мочевины при той же температуре до отрицательной реакции на нитрит-ион по йодкрахмальной бумажке затем избыток соляной кислоты нейтрализуют-,рартвором поташа до pH 6,0]. Взаимодействие VI с V проводят в уксуснокислой среде при pH 4,0, для чего в течение 2—3 мин к реакционной смеси приливают 2,13 л уксусной кислоты при температуре не выще +2°С. Для завершения реакции массу перемешивают 30 ч при —2—(+2°С) и 24 ч при 0°С—(+4 °С). Осадок VIII отфильтровывают, промывают водой (2 раза по 250 мл) и высушивают при 20—25 °С в вакууме. Выход 288 г (86%, считая на IV). [c.164]

    Ряд азидов был превращен в соответствующие ацетиламины путем нагревания их с избытком уксусного ангидрида с добавкой или без добавки небольшого количества серной кислоты [129, 180, 202, 204, 248, 249]. При этом, повидимому, сначала образуются диацетиламины, которые обычно гидролизуются в моноацетиламины при выделении продукта реакции [202]. Применение уксусного ангидрида является полезным видоизменением в тех случаях, когда с ледяной уксусной кислотой образуются главным образом симметричные алкильные производные мочевины. [c.359]

    Менее надежный способ превращения азидов в амины сводится к нагреванию азида с подкисленной водой. При этом часто наряду с аминами образуются симметричные алкильные производные мочевины [5, 126], а иногда они даже являются единственными продуктами реакции [5, 202, 248, 249]. Иногда происходит гидролитическое расщепление азида на карбоновую и азотистоводородную кислоты [202, 256]. Крепкая уксусная кислота, в которой многие азиды растворимы, является подходящим реагёнтом [3, 93, 120, 207, 257]. При применении слегка разбавленной уксусной кислоты (от 3 1 до 1 1), повидимому, образуются меньшие количества симметричных алкильных производных мочевины, чем при работе с ледяной уксусной кислотой. [c.360]

    С другой стороны, с уксусной кислотой количество симметричных алкильных производных мочевины больше, чем при применении более сильных кислот, например серной [5, 127, 249]. Условия перегруппировки азидов в концентрированной серной кислоте приближаются к условиям проведения реакции Шмндта, и в соответствии с этим происходит образование аминов [12, 129], но целесообразность обработки азидов таким реагентом, как концентрированная серная кислота, является сомнительной [5, 126, 129]. [c.360]

    В 12-литровую круглодоннуго колбу помещают 870 г (5 молей) хлористоводородного л-фенетидина и 1 200 г (20 молей) мочевины (примечание 1). К этой смеси добавляют 2 л воды, 40 мл концентрированной соляной кислоты и 40 мл ледяной уксусной кислоты и суспензию после энергичного взбалтывания нагревают до кипения. Полученный таким образом темнопурпуровый раствор поддерживают при сильном кипении в продолжение 45—90 мин., пока реакция не завершится. В течение первой половины периода нагревания раствор остается прозрачным. Выделение препарата начинается во второй половине процесса и продолжается с возрастающей скоростью до тех пор, пока все содержимое сосуда внезапно не превратится в сплошную твердую массу. В этот момент источник нагревания следует немедленно отставить (примечание 2). [c.65]


    Для определения механизма реакций часто используют контролируемое добавление подходящего донора протонов или электрофила (в реакциях восстановления) или нуклеофила (в реакциях окисления). Протоиодонорная способность изменяется в следующем ряду хлорная кислота > уксусная кислота фенол > сиирт. В качестве доноров протонов можио использовать также С-кислоты (нанример, малоновый эфир) или Ы-кислоты (иапример, мочевину). В качестве оснований применяют пиридин, карбоксилат-ионы, алкоксиды или соли малонового эфира. Иногда необходимо установить, какие свойства, основные или нуклеофильные, определяют поведение исследуемого (в электрохимическом эксперименте) соединения. Ответ иа этот вопрос может дать сравнение эффекта использования двух оснований с приблизительно равными значениями рЛ , но с различной ну-клеофильностью, нанример пиридина и 2,6-диметилниридина. [c.211]

    Другие реакции котарнина легче объяснить, если принять для него структуру аминоальдегида, а не аминоспирта однако при этом нельзя исключить возможность, что и в этих реакциях исходной является аминоспиртовая формд котарнина. Сюда относится N-бензоилирование котарнина [500 с образованием альдегида XII, реакция с уксусным ангидридом, которая приводит к получению XIII [503], взаимодействие с фенилизоцианатом, в результате которого образуется нерастворимое в кислотах производное мочевины (XIV) 1502, 5041. [c.336]

    Подобная реакция осуществлена между замещенными циануксусными кислотами и мочевиной в уксусном ангидриде. Первоначально образующиеся производные цианацетилмочевины при стоянии в водном растворе едкого натра превращаются в 5-замещен-ные 4-амино-2,6-диоксипиримидины [c.155]

    Большое влияние на выход винилацетата, этилидендиацетата и ацетальдегида оказывают различные растворители, которые добавляются в уксусную кислоту. Так, при добавлении в уксусную кислоту таких соединений, как мочевина и амиды, образование этилидендиацетата значительно снижается. Например, замена 50—60 % уксусной кислоты диметилбензамидом в одних и тех же условиях реакции приводит к снижению выхода этилидендиацетата с 23,0 до 0,6 % (считая на прореагировавший этилен). При этом выход ацетальдегида снижается с 64,0 до 18,2 %, а выход винилацетата повышается с 7,6 до 41,4 %. Количество таких добавок может составлять до 80% от общего содержания уксусной кислоты. [c.487]

    Кнавенагелевская конденсация коричного альдегида с ма 1еиновой кислотой реакция катализируется положительными ионами Амины и аминокислоты их действие тем сильнее, чем выше концентрация водорода вторичные амины, как более сильные основания, активнее, чем первичные амины в водных или спиртовых растворах слабые основания, например, мочевина, не активны, но хорошо катализируют реакцию в сильно диссоциирующем кислом растворе, например в уксусной кислоте 347 [c.439]

    При растворении в амфотерном растворителе — воде или спирте — лишь немногие углеводороды (и ограниченное число их производных) способны реагировать как кислоты и основания, и обмен водорода в СН-связях, наиболее перспективный для выяснения реакционной способности и особенностей строения органических соединений, происходит сравнительно редко. Кислотные свойства веществ очень усиливаются при их растворении в таком протофильном растворителе, каким является, например, жидкий аммиак. Это было ранее показано в работах по кислотному катализу в жидком аммиаке, по электропроводности растворов в нем и другими физико-химическими измерениями (о кислотах и основаниях в жидком аммиаке см. обзор [7]). Уксусная кислота, сероводород и даже п-нитрофенол становятся равными по силе соляной, азотной и хлорной кислотам. Это и понятно все перечисленные кислоты в жидком аммиаке превращаются в аммонийные соли, и фактически реакцию аммонолиза катализирует одна и та же кислота — ион аммония. Такие вещества, как мочевина и ацетамид, практически нейтральные в воде, в жидком аммиаке частично ионизируют и превращаются в ионы С0(МН2)МН", Hз ONH . Названные вещества катализируют реакцию аммонолиза и реагируют со щелочными металлами с выделением водорода. В аммиачном растворе амид калия (сильное основание) нейтрализует слабые кислоты — инден, флуорен, трифенилметан, дифенилметан и т. д. с образованием окрашенных анионов углеводородов  [c.38]

    Первоначально образуется изоцианат, который удается выделить только в апротонном основном растворителе, таком как ДМФ. Если реакция протекает дальше, то взаимодействие с уксусной кислотой, образующейся в качестве одного из продуктов, приводит к ацетиламину и производному мочевины схема (181) . Если в молекуле имеется подходящим образом расположенный нуклеофил, то образуются гетероциклические соединения. Механизм этой реакции обсуждается в работе [99]. [c.485]

    Мукайяма и сотр. исследовали реакцию замещенных мочевин с большим избытком карбоновых кислот Ч при 140—160 °С и спиртов при 160—190 °С. Предполагается, что вначале происходит распад, приводящий к образованию изоцианата, который затем взаимодействует с кислотой или спиртом. Скорости реакций сильно меняются с изменением характера растворителя, например при переходе от безводной уксусной кислоты к водной или при изменении силы кислоты. [c.130]

    Другая цель качественного органического анализа состоит в открытии определенного органического вещества в какой-либо смеси продуктов. Эта задача, по причине чрезвычайного разнообразия и большой изменяемости органических соединений, сопряжена со значительными трудностями, и здесь нет возможности установить точных общих правил, как в анализе неорганическом [4, с. 139]. Происходило это потому, что методы неорганического анализа для разделения или осаждения ионов практически не могли найти применения в органическом анализе. Правда, существует, казалось бы, некоторая аналогия между качественными реакциями на неорганические ионы и реакциями на определенные функциональные группы в органических соединениях. Но, во-первых, органические реакции вообще менее специфичны и избирательны во-вторых, идентификация какой-либо функциональной группы редко дает представление вообще о соединении, скорее она может быть использована для группового анализа, для установления, к какому классу соединений можно отнести испытуемое вещество. Присутствие некоторых функциональных групп с трудом можно было установить химическими методами исследования, а физические методы еще не были в достаточной степени разработаны. Тем не менее в конце аналитического периода истории органической химии, как это видно из цитированного руководства Жерара и Шанселя, имелась уже некоторая система в вещественном качественном анализе, позволяющем идентифицировать определенные органические соединения, особенно имеющие практическое значение, и в первую очередь для медицины. В этом руководстве указаны, например, способы идентификации органических оснований, или алкалоидов (анилина, никотина), большой группы собственно алкалоидов (морфина, наркотина, стрихнина, хинина и др.), органических кислот (синильной, уксусной, муравьиной, бензойной, щавелевой, виннокаменной, лимонной и яблочной), а также группы углеводов, белковых веществ, мочевой кислоты, карбамида (мочевины), креатина, цистина, ксантина и т. д. [c.290]

    Успехи структурной биохимии с самого начала были неразрывно связаны с развитием органической химии. Толчком к развитию биохимии послужили работы великого шведского химика Карла Шееле (1742—1786), посвященные изучению химического состава растительных и животных тканей. Шееле выделил ряд природных соединений, в том числе винную, молочную, мочевую, щавелевую, лимонную и яблочную кислоты, глицерин, некоторые эфиры и казеин. В начале XIX в. в лабораториях Йёнса Берцелиуса и Юстуса Либиха были разработаны новые, усовершенствованные методы количественного элементарного анализа. С помощью этих методов было установлено, что вещества, выделенные Шеело, содержат углерод. Вслед затем начались попытки синтезировать углеродсодержащие, т. е. органические, соединения. Это направленгю было очень важным, более важным, чем может представиться на первый взгляд. Дело в том, что в то время был широко распространен витализм, т. е. убеждение, что органические соединения могут синтезироваться лишь с помощью особой жизненной силы , присутствующей, как полагали, только в живых тканях. Синтез мочевины, осуществленный Фридрихом Вёлером (1800—1882) в 1828 г., по существу показал несостоятельность витализма (хотя лишь немногие исследователи в то время поняли это). Успешный синтез мочевины был неожиданным результатом попыток приготовить цианат аммония при помощи реакции между цианатами металлов и солями аммония. Несколько позднее, в 1844 г., Адольф Кольбе синтезировал уксусную кислоту, а в 1850-х годах Марселену Бертло удалось уже осуществить синтез целого ряда органических соедине- [c.9]


Смотреть страницы где упоминается термин Уксусная кислота реакции с мочевиной: [c.322]    [c.227]    [c.377]    [c.446]    [c.448]    [c.452]    [c.506]    [c.362]    [c.480]    [c.164]    [c.339]    [c.276]    [c.659]    [c.178]    [c.23]    [c.298]    [c.432]    [c.8]    [c.23]    [c.155]    [c.202]   
Изотопы в органической химии (1961) -- [ c.601 ]




ПОИСК





Смотрите так же термины и статьи:

Уксусная реакция с КМп и с КВг



© 2025 chem21.info Реклама на сайте