Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Порядковые числа номера элементов

    Массовое число и порядковый номер элемента (число протонов) обозначают числовыми индексами слева от символа химического элемента верхний индекс означает массовое число, нижний — заряд ядра. [c.9]

    Поскольку протон — единственная положительно заряженная частица, обнаруженная в ядре, то порядковый номер элемента равен числу протонов ядра. В ядре алюминия, порядковый номер которого 13, должно содержаться 13 протонов, но так как его атомная масса равна 27, то в его ядре, как было установлено позднее, должно содержаться еще 14 нейтронов. Нейтроны изменяют массу ядра, но не влияют на его заряд. В ядре атома натрия, порядковый номер которого 11, атомная масса 23, должно сод жаться 11 протонов и 12 нейтронов. (И протоны, и нейтроны находятся в ядре, поэтому их называют нуклонами . ) [c.157]


    Периодическая система химических элементов создана Д. И. Менделеевым в 1869 г. На форзацах представлена таблица Периодическая система элементов Д. И.Менделеева в современном виде. Химические знаки элементов расположены в клетках таблицы. В верхней части клетки указаны порядковые номера элементов цифры, стоящие рядом с химическим знаком элемента, обозначают атомные массы (по данным 1981 г.). Атомные массы приведены по углеродной шкале. В квадратных скобках даны массовые числа наиболее устойчивых изотопов. [c.9]

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА — естественная система химических элементов, созданная гениальным русским химиком Д. И. Менделеевым. Расположив элементы в последовательности возрастания атомных масс и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, закономерности которой теоретически вытекают из сформулированного им периодического закона Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, находятся в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая система элементов Д. И. Менделеева позволяют установить свя ь между всеми химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. Как впоследствии стало известно, периодичность в изменении свойств элементов обусловлена числом электронов в атоме, электронной структурой атома, периодически изменяющейся по мере возрастания числа электронов. Число электронов равно положительному заряду атомного ядра это число равно порядковому (атомному) номеру элемента в периодической системе элементов Д. И. Менделеева. Отсюда современная формулировка периодического закона Свойства элементов, а также свойства образованных ими простых и сложных соединений находятся в периодической зависимости от величины зарядов их атомных ядер (2) . Поскольку атомные массы элементов, как правило, возрастают в той же последовательности, что и заряды атомных ядер, современная форма таблицы периодической системы элементов полностью совпадает с менделеевской, где аргон, кобальт, теллур расположены не в порядке возрастания атомной массы, а на основе их химических свойств. Это несоответствие рассматривалось противниками Д. И. Менделеева как недостаток его системы, но, как позже было доказано, закономерность нарушается в связи с изотопным составом элементов, что также предвидел Д. И. Менделеев. Периодический закон и периодическая система элементов [c.188]


    Поскольку атом в целом нейтрален, суммарный заряд электронов должен быть равен заряду ядра. Последний удалось вычислить по доле а-частиц, рассеиваемых под определенным углом. Оказалось, что число элементарных положительных зарядов ядра атома равно порядковому (атомному) номеру элемента в периодической системе Д. И. Менделеева. Таким образом, [c.29]

    Атомный помер Число протонов в ядре атома, порядковый номер элемента в периодической таблице [c.543]

    В подгруппах же элементов с возрастанием порядкового номера элемента (увеличение числа электронных слоев) раз.меры атомов в общем увеличиваются, а энергия ионизации уменьшается. Характер изменения сродства к электрону (см. рис. 14) в периодах и подгруппах [c.264]

    Аналогично уменьшаются с ростом порядкового номера элементов радиусы попов, образуемых лантаноидами (радиус иона Се + равен 107 пм, а Lu + — 85 пм. Эта закономерность называется лантаноидным сжатием. В ионах лантаноидов число электронных слоев одинаково. Увеличение заряда ядра усиливает притяжение электронов к ядру, и вследствие этого уменьшается радиус ионоа , [c.49]

    Ядра атомов состоят из протонов и нейтронов (общее название — нуклоны). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу. [c.23]

    Строение атомов. Протоны, нейтроны и электроны. Атомная единица массы, порядковый (атомный) номер и массовое число. Элементы и их символы. [c.13]

    Число протонов = Заряд ядра = Порядковый номер элемента Нейтроны [c.29]

    ЭЛЕМЕНТЫ ХИМЙЧЕСКИЕ, совокупности атомов с определенным зарядом ядра Ъ. Д. И. Менделеев определял Э. х. так материальные части простых или сложных тел, к-рые придают им известную совокупность физ. и хим. св-в . Взаимосвязи Э. X. отражает периодическая система химических элементов. Порядковый (атомный) номер элемента в ней равен заряду ядра, к-рый в свою очередь численно равен числу содержащихся в ядре протонов. Для каждого Э. х. известны разновидности атомов - изотопы (существующие в природе и полученные искусственно путем ядерного синтеза), различающиеся числом нейтронов в ядрах. Совокупность атомов, характеризующаяся определенной комбинацией протонов и нейтронов в ядре, наз. нуклидом. Атомная масса Э. х. рассчитывается, исходя из значений масс всех его природных изотопов с учетом их относит, распространенности, и выражается в атомных единицах массы, за к-рую принята 12 массы атома углерода Атомная единица массы равна 1,66057 10 кг. Суммарное число протонов и нейтронов в ядре равно массовому числу А. [c.472]

    Из работ Мозли следовало, что с помощью рентгеновских лучей, образующихся при столкновении пучка электронов с металлической мишенью, можно измерить заряд атомного ядра. Именно в этой характеристике заключалось основное различие между атомными ядрами разных элементов, и Мозли назвал ее порядковым (атомным) номером элемента (рис. 4.11). Это позволило установить строгую последовательность элементов, не обращаясь к свойствам внешних частей атома, различным спектрам, связанным с его внешними частями (см. разд. 5.1), и к химическим свойствам элементов. Оказалось, что Мозли нашел способ измерения числа единичных положительных зарядов (позднее названных протонами) в атомном ядре. Это открытие позволило разрешить несколько невыясненных вопросов [c.64]

    Ядро атома — положительно заряженная частица, в которой сосредоточена практически вся масса атома. Заряд ядра численно равен порядковому (атомному) номеру элемента. В состав ядра входят протоны и нейтроны. Число протонов равно порядковому номеру, а число нейтронов определяется по разнице между массовым числом и зарядом ядра 2. Атомы, имеющие одинаковый заряд ядер, но разные массовые числа (различное число нейтронов), называют изотопами. Химические свойства любого элемента могут быть достаточно хорошо описаны в рамках представлений о протонах, электронах и нейтронах. [c.377]

    Таким образом, все химические элементы состоят из атомов, ядра которых содержат определенное число протонов и, следовательно, имеют определенный положительный заряд. Число протонов в ядре называется порядковым атомным) номером элемента. Разумеется, все порядковые номера — целые числа. Так, порядковый номер кислорода 8 означает, что в ядре атома кислорода находится восемь протонов (заряд ядра 8+). Нейтральный атом кислорода должен иметь также восемь электронов (заряд каждого электрона 1—). [c.132]

    Между квадратным корнем из волнового числа н порядковым I номером элемента существует линейная зависимость. [c.537]

    В то время, когда была предложена периодическая система, ничего пе было известно о строении атома и, естественно, о заряде ядра. Вначале элементы располагали в соответствии с их атомным весом, однако со временем было установлено, что этот принцип расположения в некоторых местах нарушается и приходится производить перестановку элементов. Таким образом, появилась необходимость обозначать особыми числами порядок следования элементов в периодической системе. Эти числа назвали порядковыми числами (номерами). Позже был найден способ определения порядковых чисел элементов независимо от периодической системы (ср. стр. 232), и, наконец, оказалось, что порядковые числа идентичны зарядам ядер. [c.20]


    Все атомы с одинаковым числом протонов и, следовательно, с одинаковым атомным номером рассматриваются как атомы одного элемента и обозначаются одно- или двухбуквенным символом. Атомы одного элемента с различным числом нейтронов называются изотопами данного элемента. Для обозначения изотопов слева от символа элемента при помощи верхнего индекса указывают массовое число (например, С1). Иногда слева от символа элемента нижним индексом указывают также атомный номер, или, как чаще говорят, порядковый номер элемента (например, С ), хотя это вовсе не обязательно, поскольку название элемента и его порядковый номер полностью определяются символом элемента. Каждый изотоп элемента имеет собственную атомную массу, а естественная атомная масса представляет собой средневзвешенное значение из этих изотопных масс усреднение производится в соответствии с естественным содержанием каждого изотопа в природе. [c.52]

    Некоторые физические свойства переходных металлов (температуры плавления и кипения, а также твердость) обусловлены числом имеющихся в их атомах неспаренных -электронов. Эти свойства постепенно усиливаются, достигая максимума в группе Мп, а затем с юза уменьшаются с увеличением порядкового номера элементов. [c.450]

    Здесь 2-порядковый номер элемента, число ковалентных связей, [c.469]

    Здесь 2-порядковый номер элемента, число электронов, отнесен- [c.482]

    В гл. 1 уже упоминалось, что атомное ядро состоит из двух типов основных элементарных частиц, протонов и нейтронов, которые в совокупности называются нуклонами. Ядро имеет положительный заряд, равный числу содержащихся в нем протонов, а это число 2 называется порядковым (атомным) номером ядра. В нейтральном атоме ядро окружено электронами, число которых равно числу протонов в ядре. Поскольку химические свойства атома определяются его электронами, все нейтральные атомы с одинаковым числом электронов (и протонов) рассматриваются как атомы одного элемента. Следовательно, порядковый номер атома указывает на его принадлежность к определенному элементу. Суммарное число протонов и нейтронов в атомном ядре называется его массовым числом, А. [c.405]

    Положительно заряженные частицы (относительная масса округленно равна I) ядра атома. Каждый элемент имеет свое специфическое число протонов. Оно определяет общий положительный заряд ядра и место элемента в периодической системе. Число протонов равно порядковому номеру элемента. [c.29]

    Атомные радиусы убывают в последовательности 8 > С1 > Аг, поскольку при переходе от 8 к С1 и от С1 к Аг заряд ядра возрастает на единицу. В пределах одного периода валентные электроны сильнее притягиваются к ядру с возросшим положительным зарядом, поэтому атомные радиусы соответственно уменьшаются. Для изоэлектронных (имеющих одинаковое число электронов) атомных и ионных частиц эффективные радиусы уменьшаются по мере возрастания заряда ядра (порядкового номера элемента), так как и в этом случае происходит последовательное увеличение притяжения электронов к ядру. Таким образом, указанные изоэлек-тронные частицы в порядке уменьшения эффективных радиусов располагаются в следующий ряд 8 > С1 > Аг > К > Са .  [c.405]

    В результате тщательного изучения ироцессов прохождения а-частнц через различные материалы было показано, что атомы обладают чрезвычайно ажурной структурой, и общий объем всех частиц, образующих данный атом, составляет лишь ничтожную долю (примерно от 10 до 10" ) объема самого атома. При этом отрицательные заряды в виде электронов находятся в разных частях атома, а все положительные заряды находятся в центральной части атома — в атомном ядре, в котором сосредоточена также и практически вся масса атома (так как масса электронов очень мала). Величина заряда ядра оказалась строго одинаковой для всех атомов данного элемента. При выражении ее в единицах, равных заряду электрона, она равняется порядковому номеру элемента в периодической системе. Очевидно, что число электронов в атоме, находящемся в нейтральном состоянии, должно быть также равно этому числу. [c.27]

    Надежные значения сродства к электрону найдены лишь для не-болылого числа элементов. Понятно, что сродство к электрону зависит от электронной конфигурации атома, и в характере его изме-нени5 с увеличением порядкового номера элемента наблюдается отчетливо выраженная периодичность (рис. 14). Сравнение с измененном энергии ионизации показывает, что максимумы и минимумы на кривой сродства к электрону смещены по сравнению с кривой энергии ионизации на один элемент влево. [c.35]

    Порядковый номер элемента Число электронов на данном уровне и подуровне  [c.28]

    Г. Мозли доказал, что в системе Менделеева основйй является не атомный вес, а место, занимаемое элементами, порядок их чередования - этот порядок должен отвечать количеству электронов, движущихся вокруг ядра в атоме. Этот порядок распределения химических элементов в современной науке описывают с помощью порядковых (атомных) номеров элементов. Может быть, справедливо, как полагал еще В, И. Вернадский, называть эти номеоа числами Мозли, Кстати, упомянем высказывание В. И. Вернадского о Г. Мозли Я [c.18]

    Число протонов в ядре атома принято называть порядковым (атомным) номером и обозначать буквой Z. Оно совпадает с числом электронов, окружающих ядро, поскольку атом должен быть электрически нейтральным. Массовое число атома равно полному числу содержащихся в нем тяжелых частиц протонов и нейтронов. Когда два атома сближаются на достаточное расстояние, чтобы между ними возникло химическое взаимодействие-или, как принято говорить, химическая связь,-каждый атом ощущает главным образом наличие самых внешних электронов другого атома. Поэтому именно эти внещние электроны играют определяющую роль в химическом поведении атомов. Нейтроны в составе ядра оказывают ничтожное влияние на химические свойства атомов, а протоны важны постольку, поскольку они определяют число электронов, которые должны окружать ядро нейтрального атома. Все атомы с одинаковым порядковым номером ведут себя в химическом отношении практически одинаково и рассматриваются как атомы одного и того же химического элемента. Каждому элементу присвоено определенное название и одно- или двухбуквенный символ (обычно заимствованный от греческого или латинского названия). Например, символ углерода-С, а символ кальция-Са. В качестве символа натрия. Ка, взяты две первые буквы его латинского (и немецкого) названия натриум, чтобы отличить его от азота N (латинское название нитроген). В таблице- атомных масс элементов, помешенной на внутренней стороне обложки книги, приведен алфавитный перечень элементов и их символов. [c.15]

    За немногим исключением, -элементы проявляют переменную степень окисления. Почти для всех -элементов, в частности, воз-можка степень окисления +2 — по числу внешних электронов. Высшая степень окисления большинства -элементов отвечает номеру группы периодической системы, в которой они находятся. В отличие от подгрупп 5- и /7-элементов в подгруппах -элементов с увеличением порядкового номера элемента значение устойчивой степени окисления возрастает. [c.503]

    Был установлен физический смысл порядкового номера элемента в периодической системе порядковый номер оказа.лся важнейшей константой элемента, выралсаюш ей положительный заряд ядра его атома. Из электронейтральности атома следует, что и число вращающихся вокруг ядра электронов равно порядковому номеру элемента.  [c.61]

    Определение порядковых номеров элементов по зарядам ядер их атом ш позволило установигь общее число мест в периодической системе между водородом, имеющим порядковый номер 1, и ураном (порядковый номер 92), считавшимся в то время последним членом периодической системы элементов. Когда создавалась теория строения атома, оставались незанятыми места 43, 61, 72, 75, 85 и 87, что указывало па возможность сун1ествования еще неоткрытых элементов. И действительно, в 1922 г. был открыт элемент гафний, который занял место 72 затем в 1925 г. — рений, занявший место 75. Элементы, которые должны занять остальные четыре свободных места таблицы, оказались радиоактивными и в природе [c.61]

    Сумма числа протонов и числа нейтронов, содержащихся в ядре атома, называется массовым числом атома (ядра) Поскольку и протон, и нейтрон имеют массу, очень близкую к атомной единице массы, то массовое число атома приближенно выряжает его атомную массу. Но число протонов равно числу ноло> ситсльных зарядов, т. е. порядковому номеру элемента сле-ловатсльно, число нейтронов равняется разности между массовым числом и порядковым номером элемента. [c.104]

    В апреле 1914 г. Мозли опубликовал результаты исследования 39 элементов, от 1зА1 до 7,Ли. (Напомним, что порядковый номер элемента указывается индексом слева внизу от символа элемента.) Часть полученных им данных воспроизводится на рис. 7-2. Мозли писал Спектры элементов представляют собой равноотстоящие друг от друга горизонтальные линии. Выбранная последовательность расположения элементов соответствует возрастанию их атомных весов (масс), за исключением случаев Аг, Со и Те, когда она не согласовывалась с последовательностью изменения их химических свойств. Между элементами Мо и Ки, а также между Nd и 8т и между XV и Оз остаются вакантные места для спектральных линий, но элементы, которым могли бы соответствовать линии в этих местах, неизвестны... Все это эквивалентно тому, как если бы мы приписали последовательным элементам ряд характеризующих их последовательных целых чисел... Тогда, если бы какой-либо элемент не удавалось охарактеризовать такими числами или произошла ошибка в составлении последовательности элементов либо в нумерации мест, оставленных для еще неизвестных элементов, установленная закономерность (прямолинейная зависимость) оказалась бы сразу же нарушенной. Это позволяет на основании одних лишь рентгеновских спектров заключить, не пользуясь никакой теорией строения атома, что указанные выше целые числа действительно могут характеризовать элементы... Недавно Резерфорд показал, что наиболее важной составной частью атома является расположенное в его центре положительно заряженное ядро, а Ван-ден-Броек выдвинул предположение, что заряд этого ядра во всех случаях представляет собой целочисленное кратное от заряда ядра водорода. Есть все основания предполагать, что целое число, определяющее вид рентгеновского спектра [элемента], совпадает с числом единиц электрического заряда в ядре [его атомов], и, следовательно, данные эксперименты самым серьезным образом подтверждают гипотезу Ван-ден-Броека . [c.312]

    Хотя уравнение Шрёдингера для многоэлектронных атомов не имеет точного решения, можно показать, что при возрастании порядкового номера элементов не следует ожидать радикального изменения электронного строения атомов по сравнению с атомом водорода. Атомы всех элементов тоже могут быть охарактеризованы квантовыми состояниями, причем для этого используются те же четыре квантовых числа (п, /, ш и х) и по существу такие же электронные функции вероятности, или облака электронной плотности. Конечно, квантовые уровни энергии для разных элементов не совпадают, однако при переходе от одного элемента к другому они изменяются закономерным образом. [c.386]

    Атомам в соединениях и комплексных ионах приписывают степень окислении, чтобы иметь возможность описывать перенос электронов при химических реакциях. Составление уравнения окислительно-восстановительной реакции основывается на требовании выполнения закона сохранения заряда (электронов). Высшая степень окисления атома, как правило, увеличивается с ростом порядкового номера элемента в пределах периода. Например, в третьем периоде наблюдаются такие степени окисления На + ( + 1), Мя" + ( + 2), А1 -" ( + 3), 81Си( + 4), РР5(5), 8Рв( + 6) и СЮЛ + 7). Степень окисления атома часто называется состоянием окисления атома (или элемента) в соединении. Реакции, в которых происходят изменения состояний окисления атомов, называются окислительно-восстановительными реакциями. В таких реакциях частицы, степень окисления которых возрастает, называются восстановителями, а частицы, степень окисления которых уменьшается, называются окислителями. В окислительно-восстановительной реакции происходит перенос электронов от восстановителя к окислителю. Частицы, подверженные самопроизвольному окислению — восстановлению, называются диспропорционирующими. В полном уравнении окислительно-восстановительной реакции суммарное число электронов, теряемых восстановителем, равно суммарному числу электронов, приобретаемых окислителем. Грамм-эквивалент окислителя или восстановителя равен отношению его молекулярной массы к изменению степени окисления в рассматриваемой реакции. Нормальность раствора окислителя или восстановителя определяется как число его эквивалентов в 1 л раствора. Следовательно, нормальность раствора окислителя или восстановителя зависит от того, в какой реакции участвует это вещество. [c.456]

    Пер1юдический закон указывает на периодический характер функциональной зависимости свойств элементов от заряда ядра атомов такой вид имеет эта зависнмость для огромного.числа самых разнообразных характеристик. На рис. 1.11 и 1.12 показаны завнскмости атомных объемов и первых энергий ионизации атомов от порядкового номера элементов. Эти зависимости выражаются кривыми, имеющими ряд максимумов и минимумов. Аналогичный характер имеет подобная зависимость и для многих других свойств (коэффициент сжимаемости, коэффициент расширения, температуры плавления и кипения, радиусы ионов и т. д.). [c.34]

    Рве. 7.34. Технологическая схема разделения трехкомпонентной смеси (числитель — порядковый номер элемента знаменатель — тип элемента остальные числа — метки потоков) [c.402]

    Ис 1ользование в качестве основания при систематизации атомов порядкового номера элементов (Z), или заряда ядра (что, то же самое), логически и по физической сути не оправданно. Порядковый номер — это не физическая характеристика атома, а только номер в каком-то порядке, математическая абстракция. Заряд ядра, как известно, является тоже производной величиной. Он равен числу протонов в ядре и меняется тогда, когда меняется число протонов, элементарных "кирпичиков", лежащих в основе строения ядра. А числа протонов среди оснований систематизации как раз и не видно. Мне могут возразить какая разница — заряд ядра брать или число протонов в ядре, ведь численно они равны С формальных позиций может быть и так. Но ведь мы хотим понять генезис превращения атомов, в основе которого лежат количественные изменения материальных составляющих. [c.109]


Смотреть страницы где упоминается термин Порядковые числа номера элементов: [c.345]    [c.6]    [c.35]    [c.345]    [c.40]    [c.107]    [c.21]    [c.36]    [c.24]    [c.9]   
Курс неорганической химии (1972) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Номер

Порядковые номера

Элементы номер



© 2024 chem21.info Реклама на сайте