Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические методы применение для установления

    Перейдем теперь к принципам, относящимся к применению физико-химических и физических методов для установления строения органических соединений. [c.297]

    Применение ЯМР-спектроскопии не ограничивается установлением или же подтверждением химического строения молекул. ЯМР дает возможность решать ряд проблем стереохимии, количественного анализа смесей, кинетики и механизмов быстрых химических реакций, в том числе протонного обмена, таутомерных превращений и другие вопросы. Целые разделы органической и неорганической химии обязаны своим стремительным развитием именно применению спектроскопии ЯМР- Данные спектров ЯМР считаются такими же надежными критериями в оценке структуры, в распознавании и отождествлении химических соединений, как и сведения других физических методов исследования. [c.10]


    Первые физические методы установления строения вещества возникли в 1912 г. с началом применения дифракции рентгеновского излучения для структурного анализа. В настоящее время для исследования химического и кристаллохимического строения веществ применяются дифракционные, спектроскопические, резонансные и другие физические методы. Многие из этих методов дают возможность получать информацию о более тонких вопросах химического и кристаллохимического строения вещества распределении электронной плотности и степени ионности связи, эффективных зарядах атомов, валентных состояниях атомов химических элементов, входящих в соединение, и т. п. Кроме того, физические методы принципиально отличаются от химических тем, что они являются неразрушающими, т. е. в процессе исследования химическое и кристаллохимическое строение вещества не изменяется. [c.173]

    Установлению характера взаимодействия адсорбат — адсорбент и состояния адсорбированных молекул способствует применение современных физических методов. [c.76]

    К собственно химическим методам исследования относятся синтез минералов и являющихся продуктами процесса соединений, изучение их состава и поведения в разных условиях при взаимодействии с теми или иными реагентами, а также фазовый химический анализ изучаемых продуктов. Обычно химические методы не используются изолированно, а сочетаются с физико-химическими и все чаще—физическими методами. Даже простая операция количественного определения pH или Ен раствора основана на применении потенциометрии — физико-химического метода. Да и определение качественного и количественного состава вещества проводят не только химико-аналитическими методами, а с широким использованием физических и физико-химических методов анализа (эмиссионного и атомно-абсорбционного спектрального, рентгеноспектрального, активационного и др.). Для обеспечения правильности результатов анализа применяют стандартные образцы веществ и материалов, состав которых установлен на основе комплексного использования химических и различных инструментальных методов. [c.199]

    Я не могу дальше останавливаться на целом ряде интересных выводов. Отмечу только, что в установлении химической природы и состава этих искусственно полученных горючих материалов чрезвычайно плодотворным оказалось применение физических методов исследования, особенно метода комбинационного рассеяния света. Оказалось, что полученные таким образом углеводороды обладают и дипольными моментами, что среди них наблюдаются изомерные видоизменения очень тонкого характера, в том числе и так называемая резонансная изомерия. [c.6]


    Интенсивное применение в течение последних двух десятилетий физических методов, в частности спектроскопии в ультрафиолетовой и инфракрасной областях, а позднее ЯМР-спектроскопии, способствовало большому прогрессу и, возможно, даже произвело революцию в области установления структуры органических молекул, особенно молекул природных соединений. В противоположность указанным выше методам масс-спектрометрии уделяли очень мало внимания как в химии природных соединений, так и в органической химии в целом, несмотря на то что за последние десять лет начали выпускаться масс-спектро-метры очень высокого качества. Такое положение создалось, вероятно, частично потому, что масс-спектрометры благодаря высокой точности и хорошей воспроизводимости масс-спектров являются превосходными точными приборами для количественного анализа и их широкое ирименение для этих целей не стимулировало поисков новых областей применения метода. Большинство химиков-органиков до сих пор еш е рассматривает масс-спектрометрию как метод количественного анализа газообразных или низкокипящих углеводородов, определения стабильных изотопов в газообразных продуктах деградации и, конечно, как метод определения молекулярных весов. [c.300]

    Благодаря применению таких приборов становится возможным выяснить характер химических реакций, вызывающих изменение битумов в процессах переработки или при старении, и типы, участвующих в них молекул. Это позволит вырабатывать и компаундировать узкие фракции для производства высококачественных битумов. Однако нефтепереработчику, по-видимому, еще долгие годы придется основываться на физических методах испытаний для проверки соответствия требованиям спецификаций, так как сложность химического анализа крайне затрудняет выявление необходимых зависимостей. Проблем дополнительно усложняется тем обстоятельством, что современные методы испытания битумов явно недостаточны. Последние достижения в разработке методов механических испытаний могут привести к установлению зависимостей, имеющих более четкий физический смысл. Эти достижения в области методов испытания будут рассмотрены дальше. [c.209]

    Каково будущее органической химии Опыт прошлого показывает, что научный прогресс распространяется подобно кругам на воде. Новые концепции или методы играют роль камня, брошенного в воду распространяясь, они вызывают изменения в областях, ранее находившихся в относительном покое. В последнее двадцатилетие такими новыми волнами прогресса явились применение квантовой механики к органическим соединениям, новые физические методы установления структуры и новые воззрения в фотохимии и органическом синтезе. Эти волны достигли весьма отдаленных областей и в настоящее время оказывают глубокое влияние на биохимию, и в особенности на область, пограничную между органической и неорганической химией. Мы надеемся, что наша книга послужит прочным фундаментом для изучения этих достижений. [c.7]

    Мотивируя появление настоящей книги, Драго в своем предисловии к ней отмечает огромную роль физических методов в современной неорганической химии. На наш взгляд, в настоящее время в этом уже нет необходимости, поскольку важность физикохимических исследований для установления строения неорганических соединений и их свойств сейчас совершенно очевидна. Однако встает другой вопрос — какая именно книга по физическим методам в неорганической химии наиболее актуальна По большинству физических методов имеются монографии, предназначенные для специалистов, работающих в данной области (например, в области электронного парамагнитного или ядерного магнитного резонанса, колебательных спектров и т. п.), так что лица, посвятившие себя непосредственному применению и развитию таких методов, в какой-то мере обеспечены необходимой литературой. Но такие книги, как правило, довольно трудны, содержат много деталей, касающихся теории методов и проведения экспериментов, и велики по объему. Все это делает их мало доступными для другого круга читателей, в частности для химиков-неоргаников, главной целью которых является не непосредственное применение всех физических методов, а умелое использование уже готовых результатов, полученных такими методами. Для этого необходимо, не становясь профессионалом, представлять себе возможности каждого метода и его ограничения, а также уметь относиться критически к выводам, основанным на результатах подобных исследований. Именно на такого- читателя ориентирована книга Драго, и в этом, по нашему мнению, ее главное достоинство. [c.5]

    Современная стереохимия включает в себя, конечно, основные идеи и достижения классической стереохимии, но отличается от последней главным образом в двух отношениях. В современной стереохимии широко применяются разнообразные экспериментальные физические методы исследования пространственного строения молекул, что позволило превратить исходные положения классической стереохимии из гипотез, которые ранее, как будет видно из следующей главы, подвергались многочисленным попыткам пересмотра, в твердо установленные истины. Эти же методы позволили превратить классическую стереохимию из науки по существу качественной (если не считать соображений о валентных углах, подсказываемых моделью углеродного тетраэдра) в количественную, оперирующую более или менее надежными данными о геометрических параметрах молекул. Второе отличие современной стереохимии от классической связано с разработкой, после создания квантовой химии, учения о природе химической связи, а следовательно, с подведением под стереохимию фундамента в виде физической теории. В результате современная стереохимия может более тонко и точно описать пространственное строение органических соединений. Характеристике того нового, что внесло в стереохимию применение современных методов экспериментальной и теоретической физики, будут посвящены [c.67]


    В органической химии проблема первого цикла вальденовского обращения оставалась нерешенной по крайней мере в течение 40 лет (ср. [8]). Для стереохимии кремнийорганических соединений прогресс в значительной степени ускорился благодаря применению современных химических и физических методов. Использованные при этом пути установления конфигурации обсуждаются в гл. 7. Основные результаты установления конфигурации излагаются в следующем разделе. [c.48]

    При изложении материала автор по мере возможности руководствовался определенной системой. В начале каждой главы обсуждаются чисто химические методы анализа, в основном позволяющие определять элементы и функциональные группы, и рассматривается также определение концевых групп. Далее автор переходит к самым разнообразным физическим аналитическим методам, позволяющим установить состав, структуру и микроструктуру полимеров. При этом сначала описываются такие методы, как ИК- и рамановская спектроскопия, ЯМР, ПМР, ЭПР, и приводится информация о составе и структуре полимеров, полученная при помощи перечисленных методов, даются указания о возможности их использования для решения различных задач в будущем. Эффективным методом для установления структуры полимера является также пиролиз с последующей газовой хроматографией или одновременное применение газовой хроматографии и масс-спектрометрии. Различные [c.7]

    Идеально количественные методы измерения должны учитывать природу, величину и распределение напряжений в образце, однако на практике это оказывается трудно осуществимым. В некоторых случаях при использовании физических методов определяются средние значения и получают качественную характеристику природы и распределения внутренних напряжений. Исследования зависимости физических свойств от внутренних напряжений во многих случаях дают возможность установить количественные соотношения между рассматриваемыми характеристиками и внутренними напряжениями с учетом физической сущности механизма их возникновения. Эти исследования имеют большое практическое значение, так как часто не столь важно знание точной величины или распределения изменяющихся напряжений, как их возможное влияние на поведение материала в процессе формирования и эксплуатации, а также установление корреляции между свойствами материала, на которые влияют внутренние напряжения, и долговечностью. Важным аспектом таких исследований является изучение концентрации напряжений в зависимости от различных физико-химических факторов. Для исследования внутренних напряжений наиболее широкое применение нашли методы измерения оптических, магнитных свойств и электрического сопротивления, а также методы рентгеноструктурного анализа. [c.55]

    В кратком обзоре методов измерения поверхностного натяжения авторы не касаются вопросов их применения и критической оценки. Между тем для правильного выбора метода исследования растворов мицеллообразующих полуколлоидных и типичных коллоидных поверхностноактивных веществ решающее значение имеет учет явлений, определяющих кинетику установления равновесных (наименьших) значений поверхностного натяжения. Эта кинетика вызывается малой скоростью процесса формирования адсорбционных слоев, связанного с диффузией молекул из объема к поверхности, ориентацией их в слое и другими явлениями. Из этого следует, что для измерения поверхностного натяжения растворов мыл необходимы истинно статические методы (например, метод лежачей или висячей капли), не зависящие от условий смачивания раствором стенок прибора. Однако и некоторые полустатические методы вполне пригодны для этой цели, обладая при этом преимуществом простоты и удобства измерений. К ним относятся I) метод наибольшего давления образования пузырей или капель, 2) метод определения веса капли и 3) метод отрыва кольца, (последний применим только для границы раствор — воздух.) См. Физические методы органической химии, под редакцией А. Вайсбергера, т. 1, Издатинлит, М., 1950, гл. VI. —Прим. ред. [c.260]

    Определение физических свойств химических соединений имеет значение в первую очередь для их открытия и характеристики в целях их практического (актуального или потенциального) применения. Далее, физические свойства органических соединений все чаще и с ббльшим успехом применяются для установления их строения. Обычный, основной метод органической химии определения строения молекул основывается на химических превращениях веществ. Физические методы, вообще говоря, подтверждают результаты химического исследовапия и, кроме того, дают сведения о строении молекул, совершенно иного характера, чем те, которые можно получить при помощи химического метода. [c.83]

    Кроме абсолютного способа измерения, используемого обычно при определении микроконцентраций, разработан прием дифференциальной спектрофотометрии [9], позволяющий проводить определение микроконцентраций элементов с точностью, не уступающей точности гравиметрических методов, громоздкость которых является общеизвестной. Таким образом, спектрофотометрические методы применимы при определении элементов в широком диапазоне их концентраций. Однако основную роль эти методы играют при определении микроконцентраций элементов, в частности, при контроле технологических процессов получения материалов высокой чистоты. Вследствие сравнительно низкой стоимости анализа и простоты используемой аппаратуры они вполне доступны для производственных лабораторий. Эти методы особенно оправданы при определении одного элемента, например, при установлений требуемого количества легирующей добавки или изучении поведения данного примесного элемента в ходе технологической очистки металла. Применение этих методов имеет особо важное значение, когда чувствительность физических методов определения данного элемента недостаточна или когда определяемый элемент не попадает в групповой концентрат по принятым способам концентрирования. [c.171]

    Наряду с применением микрохимических методов анализа, цветных реакций и физических методов исследования большую роль в этом играет также разработанный за последние годы ферментативный метод анализа, отличающийся чувствительностью, точностью и специфичностью. Основой для аналитического использования оксистероид-дегидрогеназ послужила разработка методов их выделения и очистки в больших количествах, а также установление факторов, влияющих на равновесие катализируемых этими ферментами реакций. В настоящее время для целей анализа стероидов используются За-, Зр,17р- и 20р-окси-стероид-дегидрогеназы, методики применения которых имеют некоторые различия [76]. [c.134]

    Наряду с разнообразными физическими методами исследования строения и свойств свободных радикалов для решения некоторых из этих задач в начале 40-х годов начали применяться совершенно новые кинетические приемы, основанные на детальном понимании химического механизма процессов, происходящих при участии свободных радикалов. В основе этих методов лежит то обстоятельство, что небольшое число формальных кинетических характеристик сложной системы (порядок реакции, эффективное значение энергии активации, действие ускоряющих и тормозящ-их добавок и т. п.) часто позволяет отобрать из огромного количества возможных элементарных стадий сравнительно небольшое число и даже оценить константы скоростей некоторых из них. Для процессов, протекающих по радикальному механизму, это дает возможность определить значение констант для некоторых элементарных радикальных реакций. Хотя надо иметь в виду, что полагаться на эти данные можно только в меру надежности установления механизма сложного процесса, применение кинетических методов позволило получить очень существенные результаты, которые в ряде случаев были подтверждены впоследствии прямыми методами. В качестве примера мы опишем кинетические приемы определения констант скоростей реакций алкиль- [c.17]

    Тонкослойная хроматография находит все большее применение для количественного определения углеводов. Этот метод чрезвычайно полезен при изучении кинетики реакций, исследовании их механизма и определении выхода продуктов, однако он применим лишь для анализа смесей, компоненты которых можно полностью разделить. Способы количественного определения делят на две большие группы а) прямое определение (установление количества вещества непосредственно на пластинке) б) косвенное определение (элюирование пятен вещества с последующим анализом элюата физическими методами) [1]. [c.46]

    Физические методы исследования приобретают все большее применение при изучении высокомолекулярных соединений. О таких методах, как определение удельного веса и коэффициента преломления, широко используемых для идентификации и определения чистоты полимеров, мы уже говорили ранее. Однако эти методы не могут быть использованы дJ[я более глубокого изучения полимеров и, в частности, для установления их строения. Эти задачи могут успешно решаться при помощи методов, использующих различные излучения. Такими методами являются, с одной стороны, спектроскопические методы, использующие излучения с различной длиной волны, начиная от инфракрасных лучей до ультрафиолетовых, и, с другой стороны, использование отражения от кристаллической решетки полимера рентгеновских, электронных и иных лучей. [c.161]

    В настоящее время по мере того, как изучение состава нефти продвигается в область соединений с большим молекулярным весом, определение индивидуальных углеводородов становится почти безнадежным. Даже путем комбинации химических и физических методов труднс, а часто и невозможно выделить требуемую простую фракцию. Даже если бы это и можно было сделать, для калибровки hj kho было бы такое большое количество индивидуальных соединений, которое нельзя получить в ближайшем будущем. Поэтому химики-нефтяники вынуждены ограничиться сведениями о типе молекул углеводородов и структурных групп. Возможно, что это является наиболее ценным применением спектроскопии. Другой вопрос, с которым иногда сталкивается химия нефти, это установление структуры отдельного соединения. Для этой цели пользуются характеристическими частотами, наблюдаемыми в спектрах для определенных структур. Никогда нельзя написать структурную формулу соединения только на основании спектральных данных. Однако, сопоставляя спектральные данные с данными, полученными другими методами, часто мо кно сделать выбор между несколькими взаимно исключающимися структурами. [c.320]

    Химические методы разделения и исследования состава нефти основлваются на применении групповых реакций ее компонентов. В пределах даже широких фракций, таких как бензин ил1[ 1 еросан, по реакционной способности гомологи мало отличаются друг от друга, и поэтому химическими методами пх разделить трудно. С другой стороны, в любых фракциях различия между классами и группами соединений проявляются в заметной степени, в ряде случаев достаточной для аналитических целей. При обработке данного вещества определенным химическим реагентом в строго установленных условиях можно разделить смесь по типу молекул. Здесь, как и при исследовании физическими методами, наиболее надежные результаты получают прп работе с узкими фракциями. Когда предварительное разделение вещества на узкие фракции по техническим причинам невозможно, химической обработке должно все же предшествовать фракционирование, хотя бы и не очень четкое (па 30—50-градусные фракции). Тогда компоненты смеси, выделенные химическим методом, или компоненты, оставшиеся не затронутыми этой обработкой, исследуют в дальнейшем при помощи новой комбина-пии физических и химических методов. [c.87]

    Органическая хнмпя в наши дни бурно развивается. Число органических соединений ежегодно увеличивается на несколько сот тысяч. Химики открывают все новые реакции, совершенствуют уже известные методы синтеза. Быстрому развитгпо органической химии способствует широкое применение новейших физических методов как для разделения сложных с.месей веществ, так и для анализа органических соединений, установления их строения, изучения механизмов реакций органических соединений. Ь а базе синтетической органической химии выросли и стали самостоятельными разделами теоретическая органическая химия (физическая органическая химия, квантовая органическая химия, стереохимия), органический анализ, биоорганическая химия и др. [c.7]

    А. В. Киселев (Московский государственный университет им. М. В. Ломоносова, химический факультет Институт физической химии АН СССР, Москва). Теория адсорбции газов на твердых телах должна развиваться на разных уровнях в зависимости от сложности системы и поставленной задачи. Наряду с применениями классической термодинамики, ограничивающейся установлением общих связей между макроскопическими свойствами системы и дающей численные решения только при введении дополнительных, часто эмпирических соотношений, например уравнений состояния, представлений об адсорбате как об однородной жидкости ИТ. п., важно развитие теории на молекулярном уровне для объяснения наблюденных эффектов и предсказания новых для адсорбентов разной природы и молекул различной геометрической и электронной структуры. Молекулярная теория адсорбции включает два этапа молекулярно-статистическую обработку И введение потенциальных функций. Кроме этого она опирается на комплекс химических и физических методов псследова-ния химии поверхности, характера взаимодействия и состояния адсорбционных комплексов. [c.104]

    Успехи в исследовании битумоидов в значительной степени связаны с развитием физических методов исследования Поскольку основу молекул битумоидов составляет углеродный скелет, применение количественных методов спектроскопии ЯМР С, позволяющее получить информацию о доминирующих типах взаимосвязи атомов, образующих скелет молекул битумоидов, наиболее перспективно [493—496] Состав и структура битумоидов, выделенных из углей различных месторождений, отражают особенности структуры и характер исходного материнского материала Для понимания закономерностей преобразования каустобиолитов в процессе катагенеза особое значение имеет установление в составе битумоидов так называемых реликтовых структур, к которым относятся нормальные и изопреноидные алканы, стераны, тритер-паны — составные части ископаемого органического вещества В углях различных стадий метаморфизма идентифицированы алканы нормального и изостроения (494, 495], причем в ряду при-стана и фитана установлено, что отнощение <-С 9//-С2о больще единицы и имеет тенденцию к уменьщению с увеличением стадии метаморфизма Пентациклические углеводороды гопанового ряда идентифицированы в угольных и торфяных экстрактах [495] Наряду с углеводородами в состав битумоидов входят воски, смолы, жирные и ароматические кислоты и их производные Все это очень верные признаки для понимания катагенеза угольного вещества [c.363]

    Еще на стадии проектирования оборудования большое внимание уделяется соответствию выбираемых для его изготовления материалов параметрам и свойст вам рабочей среды. В дальнейшем, имея на предприятии большое количество различных материалов, очень важно обеспечить их применение строго по назначению в соответствии с требованиями чертежно-технической документации. С этой целью на всех машиностроительных предприятиях, изготовляющих объекты котлонадзора, осуществляют контроль соответствия применяемых материалов, в том числе и сварочных материалов, требованиям Правил Госгортехнадзора СССР, стандартов и технических условий по сертификатам и паспортам (входной контроль материалов). При этом проверяют соответствие маркировки, выполненной на материалах, указанной в сертификатах или паспортах. Также проверяют полноту приведенных в сертификатах или паспортах сведений и соответствие их установленным нормам. Материалы для эиергооборз дования высокого давления, а также для особо ответственного оборудования, кроме того, подвергают на заводе— изготовителе оборудования контролю физическими методами независимо от такого контроля, выполненного предприятием—поставщиком материалов. [c.5]

    Общее представление о степени использования различных методов анализа для установления концентрации металлов в нефти и нефтепродуктах за 1967—1981 гг. можно получить из рассмотрения периодически публикуемых в журнале Analyti al hemistry обзоров [15—22] и работ советских авторов по использованию ядерно-физических методов анализа [8—12,23—27]. На рис. 1.1 приведены данные из [15—22] о числе публикаций по применению 1 — нейтронно-активационного анализа (НАА) 2 — атомно-абсорбционной и атомно-флуоресцентной спектрометрии (ААС, АФС) (в основном ААС) 3 — атомно-эмиссионной спектрометрии (АЭС) 4 — рентгено-флуоресцентного анализа (РФА) 5 — других химических и физико-химических методов (колориметрических, спектрофотометрических, электрохимических), выраженные в процентах к общему числу публикаций по определению металлов в нефти и нефтепродуктах. Видно, что с 1967 г. происходит рост числа работ, посвященных анализу нефти и нефтепродуктов инструментальными атомно-спектрометри- [c.20]

    Быстрое развитие фундаментальных представлений о механизмах реакций также дает возможность установления ряда полезных критериев, касаюшдхся тонких деталей строения и свойств природных соединений, дополняя тем самым целый ряд современных физических методов исследования. Поскольку физическим методам посвящены специальные главы книги I, то в этой главе речь будет идти исключительно о химических методах установления конформации и конфигурации. Тем не менее должно быть ясно, что почти каждое исследование требует применения разумного сочетания химических и физических методов. Обширность материала и ограниченность места не позволяют сделать 0ТОТ обзор исчерпывающим. Поэтому упор делается на изложение основных принципов, нашедших достаточно широкое применение. Естественно, что из-за этого значительную часть интересного материала приходится опустить, иногда с риском проявить необъективность. [c.530]

    Развитие структурной стереохимии углеводов сопровождалось важными достижениями в физических методах анализа, а в некоторых случая с и обусловливало их. Например, примененный Хадсоном [38] црн выводе правил изоротации принцип оптической сулёр позиции стал определяющим для установления конфигурации при С] в циклических формах сахаров. Позднее Лемье и сотр. [39] сделали вывод о зависимости между величиной константы спин-спиновего взаимодействия протонов при вицинальных атомах углерода в ЯМР-спектрах и величиной торсионного угла между проекциями С—Н-связей. Это обстоятельство ачи теЛьно облегчило развитие конформационного анализа как в химии углеводов, так и в других областях орга нической химии. [c.16]

    Другая цель качественного органического анализа состоит в открытии определенного органического вещества в какой-либо смеси продуктов. Эта задача, по причине чрезвычайного разнообразия и большой изменяемости органических соединений, сопряжена со значительными трудностями, и здесь нет возможности установить точных общих правил, как в анализе неорганическом [4, с. 139]. Происходило это потому, что методы неорганического анализа для разделения или осаждения ионов практически не могли найти применения в органическом анализе. Правда, существует, казалось бы, некоторая аналогия между качественными реакциями на неорганические ионы и реакциями на определенные функциональные группы в органических соединениях. Но, во-первых, органические реакции вообще менее специфичны и избирательны во-вторых, идентификация какой-либо функциональной группы редко дает представление вообще о соединении, скорее она может быть использована для группового анализа, для установления, к какому классу соединений можно отнести испытуемое вещество. Присутствие некоторых функциональных групп с трудом можно было установить химическими методами исследования, а физические методы еще не были в достаточной степени разработаны. Тем не менее в конце аналитического периода истории органической химии, как это видно из цитированного руководства Жерара и Шанселя, имелась уже некоторая система в вещественном качественном анализе, позволяющем идентифицировать определенные органические соединения, особенно имеющие практическое значение, и в первую очередь для медицины. В этом руководстве указаны, например, способы идентификации органических оснований, или алкалоидов (анилина, никотина), большой группы собственно алкалоидов (морфина, наркотина, стрихнина, хинина и др.), органических кислот (синильной, уксусной, муравьиной, бензойной, щавелевой, виннокаменной, лимонной и яблочной), а также группы углеводов, белковых веществ, мочевой кислоты, карбамида (мочевины), креатина, цистина, ксантина и т. д. [c.290]

    Микроозонолиз с разложением продуктов ТФФ и разделением их ГЖХ, несмотря на широкое применение физических методов исследования для характеристики структуры каучуков, является в настоящее время основным методом при установлении химического строения различных синтетических каучуков, потому что только этим методом можно определить порядок распределения звеньев в макромолекулах, а также характер разветвлений и сшиваний. [c.37]

    ИЗОТОПНЫЙ МЕТОД (метод меченых атомов). Использование в исследовательских целях различных изотопов. Среди изотопов имеются стабильные — устойчивые — и радиоактивные — распадающиеся. Атомы одного изотопа, введенные в основную массу атомов другого изотопа того же элемента, называются мечеными атомами. Наличие их в смеси может быть обнаружено физическими методами, в частности по радиоактивности . Меченые атомы равномерно распределяются среди основной массы атомов другого изотопа, что приводит к образованию меченых соединений. В частности, в агрохимии применяются меченые удобрения, например меченый суперфосфат, содержащий не только обычный фосфор с атомным весом 31, но и радиоактивный изотоп с атомным весом 32 — или меченый сульфат аммония, содержащий повышенное количество стабильного изотопа азота с атомным весом 15 — К . Применение в опытах меченых удобрений позволяет отличить питательный элемент, поступивший в растение из удобрения, от поступившего из почвы, проследить передвия ение удобрений и их химические превращения в почве и растении. Применение изотопного метода привело к установлению более правильных представлений о коэффициенте использования фосфорных и азотных удоб-)еыий, о ретроградации фосфатов и зафосфачивании почв. 1рименение радиоактивного фосфора позволило определять общий запас в почве усвояемых фосфатов. Радиоактивные изотопы используются для определения влажности почвы, ее объемного веса, при изучении вопросов мелиорации и орошения. Применение их позволило правильнее оценивать различные способы внесения удобрений, в частности некорневых подкормок, и работу туковых сеялок. И. м. получил широкое применение при изучении действия ядохимикатов, так как при его помощи быстро и точно устанавливается поступление ядохимикатов в растение и организм животного. [c.111]

    Практически каждый метод в чем-то уникален и имеет свою специфику — у одних это возможность количественного определения геометрических параметров молекул (газовая электронография, методы вращательной спектроскопии), у других — определения электрических свойств (дипольных моментов и поляризуемости молекул), у третьих — энергетических состояний или спектральных 5сарактеристик и т. д. Применения некоторых методов очень разнообразны (например, спектральных), а других — более узкие одни данные, получаемые тем или иным методом, являются вполне достоверными, а другие — оценочными или косвенными. Во многих случаях для повышения надежности результатов требуется комплексное применение нескольких физических методов исследования. Так, например, при установлении структуры сложных соединений необходимо совместное использование масс-спектрометрии, ИК, КР, УФ спектроскопии, ЯМР и других методов. Все они входят в арсенал современной инструментальной химии. [c.354]

    Вместе с тем протекание реакции зависит, как правило, не только от термодинамических свойств реагирующей системы. Прежде чем перейти в равновесное состояние, определяемое термодинамикой реакции, система проходит через ряд промежуточных состояний. Скорость прохождения системой этих стадий определяется кинетикой процесса скорость установления равновесного распределения энергии по степеням свободы — физической кинетикой, скорость установления равновесного химического состава — химической кинетикой. При этом спецификой плазмохимических реакций является сильное взаимное влияние факторов физической и химической кинетики. Конечная скорость установления равновесного распределения энергии по различным степеням свободы в ряде случаев ограничивает возможность применения классических методов химической кинетики, основанных на предположении о максвелл-больцмановском распределении эиергии в реагирующей системе. Но и в тех случаях, когда методы химической кинетики могут считаться применимыми, исследование химической кинетики системы затрудняется тем, что сравнительно высокие при рассматриваемых температурах скорости химических реакций могут весьма существенно зависеть от скорости физических процессов, таких как диффузия — молекулярный и турбулентный перенос, макроскопическое перемешивание компонентов реагирующей системы. Изучение плазмохимического процесса предполагает, в общем случае, исследование элементарных актов соударений при условии кТ Е термодинамики, физической и химической кинетики процесса, а также вопросов газодинамики перемешивающихся потоков реагирующих веществ с учетом взаимоосложняющих воздействий всех этих факторов друг на друга. Сложность такой постановки задачи очевидна. Поэтому правомерно принять некоторое физически осмысленное упрощение отдельных сторон вопроса, разграничение отдельных факторов и их взаимных влияний. [c.412]

    Установление элементарного механизма гетерогенно-каталитических реакций невозможно без применения современных физических методов исследования. Поэтому вполне понятен интерес широкого круга каталитиков к каждому новому физическому методу. На различных этапах развития теории катализа на каждый из них возлагались большие надежды и можно без преувеличения сказать, что применение рентгеновского анализа, спектроскопии, изотопов, магнитных и других методов ознаменовало определенные этапы в развитии теории гетерогенного катализа. [c.36]


Библиография для Физические методы применение для установления: [c.65]   
Смотреть страницы где упоминается термин Физические методы применение для установления: [c.10]    [c.49]    [c.410]    [c.16]    [c.175]    [c.179]   
Химия и биохимия углеводов (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Методы физические

Применение физическ(х методов для установления строения



© 2024 chem21.info Реклама на сайте