Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиакрилонитрил производство

    Полиметилакрилат и полиметилметакрилат — твердые, бесцветные, прозрачные, стойкие к нагреванию и действию света, пропускающие ультрафиолетовые лучи полимеры. Из них изготовляют листы прочного и легкого органического стекла, широко применяемого для различных изделий. Из полиакрилонитрила получают нитрон (или орлон) — синтетическое волокно, идущее на производство трикотажа, тканей (костюмных и технических). [c.502]


    Применяющиеся в промышленности методы синтеза акрилонитрила из ацетилена и синильной кислоты и из окиси этилена через этиленциангидрин сложны и дороги, так как используют дорогие продукты (ацетилен, синильную кислоту, окись этилена), что сдерживает производство синтетического волокна из полиакрилонитрила. В последнее время в одном из институтов разработан метод прямого синтеза акрилонитрила из пропилена и аммиака на окисных катализаторах так называемым окислительным аммонолизом, что дает возможность значительно снизить себестоимость этого мономера и сделать его наиболее дешевым из всех известных сейчас мономеров, применяющихся в производстве синтетических волокон. [c.327]

Рис. 28. Схема производств,а полиакрилонитрила Рис. 28. <a href="/info/63180">Схема производств</a>,а полиакрилонитрила
    Полиакрилонитрил применяется для производства волокон и в промышленности пластических масс. Промышленное применение имеют сополимеры акрилонитрила с бутадиеном, винилхлоридом, винилацетатом, винилпиридином, акриламидом и др. При нагревании полиакрилонитрила при температуре 300 С происходит его циклизация с после- [c.320]

    Акриловая кислота СН2=СН—СООН. Представляет собой бесцветную жидкость с резким запахом темп. кип. 140° С темп, плавл. 13° С 1 =1,062. Большое значение имеют эфиры акриловой кислоты (стр. 183), применяемые в производстве пластических масс. Нитрил акриловой кислоты [акрилонитрил) СН2=СН—С=М применяют в производстве одного из видов синтетического каучука (СКН, стр. 467). В присутствии катализаторов акрилонитрил полимеризуется с образованием высокомолекулярной смолы полиакрилонитрила [c.171]

    Принципиальные схемы производства полиакрилонитрил а ме  [c.401]

    Волокно на основе поливинилхлорида Волокно на основе поливинилхлорида Первоначальное название волокна дакрон Волокно на основе модифицированного полиакрилонитрила (производство прекращено) [c.576]

    Химизация народного хозяйства имеет двоякое значение. Во-первых, она усовершенствует технологию производственных процессов, заменяя механические операции химическим воздействием. Во-вторых, знание химии позволяет более разумно использовать природные ресурсы и создавать новые материалы с необходимыми свойствами. Химический метод производства характеризуется более высокой интенсивностью, производительностью труда, он легче поддается механизации и автоматизации. Тем самым возникает возможность существенно экономить затраты труда и снижать себестоимость выпускаемой продукции. Достаточно сказать, что капрон в 10 раз, а вискоза в 100 раз дешевле натурального шелка. Химическая переработка древесины позволяет полностью исключить отходы производства, причем в производстве этилового спирта 1 м древесины заменяет 275 кг зерна или 700 кг картофеля. Возможность создания искусственных полимеров из продуктов нефтепереработки, природных и попутных газов, а также отходов коксохимии позволяет в огромных количествах экономить пищевое сырье. Известное выражение М. Бертло о том, что химия сама создает собственный объект исследования, теперь приобрело особое значение. Начиная с середины XX в. химикам удалось создать материалы, подобных которым не существует в природе. Например, производство волокна началось с природной целлюлозы, затем перешло к ее химически модифицированным формам (вискоза, ацетатный шелк), а в конечном итоге сделало скачок к синтетическим материалам на принципиально новой основе (полиэфиры, полиамиды, полиакрилонитрил). [c.12]


    Полученный окислительным аммонолизом НАК может стать одним из наиболее перспективных полупродуктов для синтеза гексаметилен-диамина, адипиновой кислоты и капролактама, однако наибольшее значение он приобретает как исходный мономер в производстве полиакрилонитрила и сополимеров акрилонитрила. [c.370]

    Полиакрилонитрил является уникальным сырьем для производства текстильных волокон. Его получают полимеризацией акрилонитрила (разд. 8.4.8). [c.291]

    Для иллюстрации можно указать на то, что экономический эффект производства штапельного волокна из полиакрилонитрила и полиэфиров определяется в 2—3 раза меньшими капиталовложениями и в 15—20 раз меньшими затратами труда, чем для выработки натуральной шерсти. [c.404]

    Акрилонитрил используется для производства полиакрилонитрила (см. раздел 3.9, важнейшие синтетические полимеры). [c.425]

    Наибольшее промышленное значение из всех нитрилов имеет акрилонитрил, который играет важную роль в области высокополимеров, где его используют для получения синтетических каучуков и смол для производства синтетических волокон. Впервые акрилонитрил стали применять в больших количествах для производства устойчивых к действию масел синтетических каучуков буна-N и GR-N. В настоящее время основным потребителем акрилонитрила является промьш1ленность синтетического волокна, где его используют для получения волокон из одного полиакрилонитрила ( орлон и т. п.) или из сополимеров акрилонитрила ( акрилан , дайнел и т. п.). Надо полагать, что потребление акрилонитрила промышленностью синтетического волокна будет продолжать расширяться и превзойдет его потребление для других целей. Уже в 1954 г. из полученных в США 29 тыс. т акрилонитрила около 22 тыс. т было использовано для производства синтетических волокон и только 7 тыс. т пошло на производство 22 тыс. т каучука GR-N. В Европе полиакрилонитрильное волокно производилось в опытном масштабе в Германии. Сейчас планируется производство этого волокна в крупном масштабе в различных европейских странах Англии, Франции, Италии, Голландии и др. [c.384]

    Исходным сырьем для производства волокна нитрон служит полиакрилонитрил (ПАН, стр. 380). Для приготовления прядильного раствора полиакрилонитрил растворяют в диметилформ-амиде в две стадии сначала в аппарате-смесителе на холоду замешивают порошкообразный полиакрилонитрил с таким количеством диметилформамида, чтобы в последующем получился [c.465]

    Волокно нитрон формуют из растворов полиакрилонитрила в диметилформамиде по мокрому и сухому методам. Принцип мокрого формования волокна нитрон аналогичен с формованием триацетатного волокна. В качестве осадительной ванны используют разбавленный водный раствор диметилформамида или смеси многоатомных спиртов с диметилформамидом. Вода или спирты, содержащиеся в осадительной ванне, смешиваясь с диметилформамидом, вымывают его из поступающих в ванну струек прядильного раствора. При этом полиакрилонитрил выделяется из раствора в виде тонких волокон, которые далее поступают на приемные приспособления. Диметилформамид отгоняют из осадительной ванны и возвращают в производство. [c.465]

    Только после работ Рейна [37], который обнаружил, что полиакрилонитрил растворяется в гидротропных растворителях (например, в концентрированных растворах солей), начались -поиски высокополярных органических растворителей, способных к образованию прочных водородных связей между полимером и растворителем, в результате чего происходит растворение полимера. Открытие таких растворителей, как диметилформа-мид, дало возможность примерно с 1943 г. создать производство полиакрилонитрильного волокна [38]. [c.438]

    Применение. Полиакрилонитрил применяется для производства волокон [55, 85, 90, 95, 133, 134, 138, 143, 146, 155, 158, 161, 166, 171, 175, 178, 200, 204], пленок [146, 178, 190, 215—219], слоистых пластиков [220], рыболовных сетей [221, 222], кожи [223], транспортных лент [224] и для других целей [225—229]. [c.447]

    Производство В. с. складывается из следующих стадий 1) приготовление прядильного расплава (полиамиды, полиэфиры, полиолефины) или р-ра (полиакрилонитрил, поливинилхлорид, поливиниловый спирт) с последующим удалением из них примесей и пузырьков воздуха 2) формование волокна из р-ра (расплава) с последующим вытягиванием в пластичном состоянии и термофиксацией 3) отделка сформованных волокон (обработка различными реагентами, замасливание, сушка, кручение, упаковка). [c.249]

    Полиакрилонитрил, получаемый полимеризацией акрилонитрила, применяется главным образом для производства синтетического волокна. Производство полиакриловых волокон за последние годы развивалось быстрее, чем производство других новых синтетических волокон, и эта тенденция будет проявляться и в дальнейшем. Так, если в настоящее время производство полиакрилонитрильных волокон составляет ориентировочно 15— 17% общего объема производства синтетических волокон (второе место после полиамидных волокон [30]), то в 1975 г., например, в США оно должно составить 30% производства всего синтетического волокна. В Западной Европе такое соотношение предполагается достигнуть уже в ближайшие 5—10 лет [31, 32]. Такой прогресс связан как с ценными качествами полиакрило-нитрильного волокна, так и с доступностью и дешевизной исходного сырья (ацетилен или этилен на базе природного или нефтяного газа). [c.558]


    Полиакрилонитрил применяется главным образом для производства волокна (литературу по этому вопросу см. в разделе о полиакрилонитрильном волокне). Кроме того, он применяется для изготовления бумаги [157, 158], для получения пленок [159, 160], в качестве усиливающих наполнителей [161, 162], для изготовления рыболовных сетей [163], фетровых изделий [164] я т. д. [165]. [c.567]

    Другим полимером, перерабатываемым в большом збъеме по мокрому методу, является полиакрилонитрил, производство которого в виде волокон составляло в 1966 г. около 8% от обшего производства химических золокон. В Японии в промышленных масштабах изготовляются по мокрому методу поливинилспиртовые волокна. В сумме мировое производство волокон по мокрому летоду составляло в 1966 г. 60% от общего объема про-.чзводства химических волокон, по сухому методу (глав-аым образом ацетатные волокна)—6,5% и из распла-зов — 33,5%. В абсолютном выражении количество волокон, выпрядаемых по мокрому методу, достигает 3,5 млн т в год при общем производстве волокон около 5,8 млн т в год. [c.270]

    Синтез акрилонитрила из ацетилена протекает вследствие взаимодействия последнего с цианистым водородом на катализаторах. Указанный способ широко распространяется и является конкурирующим с методом получения акрилонитрила из этилена п синильной кнслоты. В 1958 г. мощность производства акрилонитрила в США достнгла 135 тыс. mizod. Акрилонитрил, как указывалось ранее, необходим для получения специального нитрильного каучука, а также полиакрилонитрила, служащего для выработки разработанного в СССР искусственного волокна нитрон — заменителя шерсти. [c.80]

    Полимеры акрилонитрила имеют аморфную структуру, по при растяжении волокна из полиакрилонитрила отдельные макромолекулы его ориентируются. Этот процесс сопровождается возрастанием прочности и упругости полимера. Ориентированный полиакрилонитрил находит широкое применение в производстве прочных, термически стойких еолокои, нерастворимых в наиболее распространенных органических растворителях. [c.334]

    Нитрон. Удаление нефтепродуктов из сточных вод может быть осуществлено синтетическими волокнами нитрона, являющимися отходами производства [43]. Поглотительная способность нитрона зависит от марки используемого материала и способа его подготовки. Так, один кг обычных отходов производства нитрона поглощает до 1,2 кг нефтепродуктов. Нитрон, обработанный в 8 % растворе Na2S при температуре 75 в течение 5 часов, поглощает до 1,29 кг нефти, а нитронное волокно ПВС-ПАН-Т, представляющее собой сополимер поливинилового спирта и полиакрилонитрила и обработанное в 8 % растворе Na2S при температуре 75 поглощает до 1,36 кг нефтепродуктов на кг нитрона. [c.188]

    В случае необходимости хранения акрилонитрила в течение продолжительного периода следует иметь в виду его склонность к образованию полимеров. Несмотря на то, что полимеризация происходит только в присутствии перекисей, которые не образуются при простом действии воздуха, небольшие количества загрязнений в мономере могут легко привести к образованию перекисей, действующих каталитически. Пройсходит ли такой процесс в исследовательской лаборатории или в производстве — в обоих слу 1аях оп приведет к нежелательным результатам. Так как полиакрилонитрил является твердым веществом, не растворимым в мономере, то он может выпасть в хранилище или сосуде в виде твердого тела, удаление которого требует затраты труда. [c.15]

    Характерной особенностью акриловой и метакриловой кислот л 1ется склонность к полимеризации. При полимеризации эфи-1В или нитрилов этих кислот получают ценные для народного вяйства полимеры. В частности полиакрилонитрил — основа локна нитрон, используемого для производства лечебного пья. [c.251]

    Многие из приведенных выше полимеров находят весьма разнообразное применение. Так, полиэтилен, полипропилен, полиамиды, полиуретаны, полиэфиры применяются в производстве пластических масс, пленок и химических волокон. Полиакрилаты и полиметакрилаты перерабатываются главным образом в пластические массы, а полиакрилонитрил используется для получения химического волокна нитрон. Полибутадиен и его производные (полиизопрен, полихлоропрен) являются синтетическими кау-чуками, некоторые полиуретаны и кремнийорганические полимеры также используются в качестве синтетических каучуков, обладающих ценными свойствами. [c.383]

    Реакция осуществляется при 80 °С в присутствии хлорида меди(1) u I и NH4 I. Продукт реакции полимеризуется с образованием полиакрилонитрила, используемого в производстве химических волокон, см. 42.3. [c.466]

    Авторы полагают, что такой физико-химический подход представляет сегодня основу для современной и, главное, будущей химии и технологии процессов химической модификации полимеров. Такие важные и широко распространенные технологические процессы, как получение эфиров и других производных целлюлозы, производство поливинилового спирта, поливинилбутираля и других полиацеталей, хлорина и хлорполизтилена, полиамидокислот, полиенов из поливинилхлорида, из полиакрилонитрила и поливинилового спирта, формирование трехмерных сеток для разнообразных полимерных связующих и другие, — связаны самым непосредственным образом как раз с особенностями химического поведения частиц полимерной природы. [c.7]

    Антропогенные источники поступления в окружающую среду. Выделяется в воздух при производстве бензола, толуола и ксилола, на коксохимических заводах, при гидрогенизации угля, при гальванопластических процессах, при горении целлулоида и нагревании полимерных композиций (найлона, полиакрилонитрила, полиуретана, карбамидных и меламнновых пластмасс), при сгорании шерсти, при неполном сгорании или сухой перегонке азотистых органических веществ и при получении из них цианидов при цианировании стали при изготовлении гексаци-аноферрата(П1) калия (красной кровяной соли) и его применении для крашения и протравливания тканей (сточные воды этих производств также содержат H N) в производстве тио-цианатов при изготовлении щавелевой кислоты при действии на белки концентрированной азотной и серной кислотой при закаливании и жидкой цементации металлов в металлургии (например, при флотации сульфидной свинцово-цинковой руды), при брикетировании ферросилиция и ферромарганца). В доменном газе находили 0,03—0,3 г цианистых соединений иа 100 м , в сточных промывных водах газоочистки — 2,7—9 мг в [c.332]

    Впоследствии этот завод-был распшрен и про-.изводительность его увеличилась до 1 млн. т удобрений и до 90 тыс. т СК в год за счет дополнительного получения бутадиена одностадийным дегидрированием привозного бутана и организации [а месте производства стирола из собственного этилена и привозного бензола [186 ]. Кроме того, на этом заводе вырабатывают винилхлорид и поливинилхлорид, ацетальдегид и полиакрилонитрил и бутадиен-стирольный каучук. [c.216]

    Для того чтобы избежать повторений, те вопросы, которые будут освещаться в других статьях, в сопряженной статье лишь упоминаются. Так, например, в Акрилонитрила полимзрах лишь упомянуто о применении полиакрилонитрила для производства волокна и сделана ссылка на статью Полиакрилонитрильные волокна , где описаны методы формования этих волокон и приведены их свойства. Общие методы производства химических волокон описаны в статье Формование химических волокон. Сравнение свойств различных синтетических волокон приведено в Волокнах синтетических . В статье Акрилонитрила полимеры рассказано о путях получения этих полимеров по различным механизмам. Однако общие закономерности реакций описаны в специальных статьях, например Радикальная полимеризация , Анионная полимеризация . В статье Акрилонитрила полимеры ириведепы, в частности, диэлектрические свойства полиакрилонитрила сопоставление различных полимеров по этим свойствам дано в статье Дх электрические свойства . [c.5]

    Главным преимуществом углеродных волокон из полиакрилонитрила является более высокий выход и небольшая усадка по сравнению с волокнами из целлюлозы. Однако стоимость Производства их выше, так как исходное сырье — полиакрилонитрильное волокно — значительно дороже. Помимо этого в процессе термического разложения ноли-акрилонитрила образуются такие токсичные продукты, как цианистый водород. Получение углеродных волокон из полиакрилонитрильных по методу К АЕ осуществляют следующим образом. Сначала волокна нагревают при натяжении на воздухе в течение 20 ч при температуре 220°С. Частично карбонизированные волокна подвергают пиролизу в атмосфере водорода при 1000°С в течение 24 ч, а затем в присутствии инертного газа (азота или аргона) —при 11500Х. В результате получают углеродные волокна с высокой прочностью ( 300 —280 кгс1мм ) модуль упругости этих волокон — 17— 25 1 0 кгс1мм , плотность 1,7— [c.399]

    В связи с тем, что полиакрилонитрильные волокна плохо окрашиваются красителями, непрерывно возрастает получение волокон сополимеров акрилонитрила с небольшим количеством другого мономера, лучше поддающихся окрашиванию. Поэтому почти все выпускаемые в настоящее время промышленностью полиакрилонитрильные волокна представляют собой сополимеры акрилонитрила. Переход от производства волокон из чистого полиакрилонитрила к производству волокон из сополимеров акрилонитрила оценивается некоторыми авторами, как регресс [33], и, в связи с этим, усиливается тенденция к получению хорошо окрашиваемых полимераналогов полиакрилонитрила, получаемых путем проведения соответствующих реакций с готовым полимером или волокном из него. К числу таких реакций [c.558]

    Рассматривая прогресс в синтезе карбоцепных полимеров, нужно прежде всего отметить выявившуюся в последние годы тенденцию к развитию производства и исследовательских работ в области полимеров, получаемых на базе нефтехимического сырья, каменного угля и природных газов, представляющих наиболее доступные и дешевые виды сырья, обеспечивающие массовое производство большого числа полимеров. К этому направлению относится получение полиэтилена, изотактическото полипропилена и других стереорегулярных полимеров а-олефинов, полиформальдегида, полиакрилонитрила, полистирола, полибутадиена, полиизопрена и других полимеров, которые являются исходным материалом для производства пластических масс, синтетического волокна и синтетического каз чука. Массовое производство дешевых полимеров в первую очередь преследует цель удовлетворения повседневных нужд техники и потребностей населения в различных товарах народного потребления. [c.177]


Смотреть страницы где упоминается термин Полиакрилонитрил производство: [c.134]    [c.46]    [c.531]    [c.195]    [c.191]    [c.167]    [c.119]    [c.356]    [c.398]    [c.399]   
Волокна из синтетических полимеров (1957) -- [ c.65 ]

Синтетические полимеры и пластические массы на их основе Издание 2 1966 (1966) -- [ c.352 , c.353 ]




ПОИСК





Смотрите так же термины и статьи:

Полиакрилонитрил



© 2025 chem21.info Реклама на сайте