Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аллели мутантные III

    Крупные изменения в генотипе возникают в результате распространения в генофонде мутантных аллелей. Степень отбора и его скорость зависят от характера мутантного аллеля и силы его влияния на данный фенотипический признак. Если аллель доминантен, то он проявляется в фенотипе чаще, и отбор начинает оказывать на него положительное или отрицательное давление быстрее. Если же аллель рецессивен и не проявляется в гетерозиготном состоянии, как это обычно для больщинства мутаций, то он не подвергается отбору до тех пор, пока не появится в гомозиготном состоянии. Вероятность быстрого появления таких рецессивных гомозигот невелика, и новый аллель может исчезнуть из генофонда, прежде чем они возникнут. Рецессивный аллель, неблагоприятный в данной среде, может сохраниться в популяции и дождаться таких изменений среды, при которьгх он будет обладать преимуществом. Вероятно, эти эффекты проявятся сначала у гетерозиготы, и отбор будет благоприятствовать ее распространению в попу- [c.320]


    Обратная мутация — мутация, в результате которой мутантный аллель вновь превращается в исходный аллель. В таких случаях обычно происходит мутация рецессивного аллеля в доминантный аллель дикого типа. [c.460]

    У диплоидного организма имеются две копии каждого гена однако для выживания и нормальной жизнедеятельности в большинстве случаев бывает достаточно одной копии. Мутация, нарушающая функцию жизненно важного гена, для гаплоидного организма легальна, но она может оказаться безвредной для диплоида, если затронута лишь одна из двух копий гена. Чаще всего в геномах диплоидных организмов содержится много таких рецессивных ле-талей. Однако половое размножение накладывает ограничение иа их количество. Если обе родительские особи несут рецессивную летальную мутацию в одном и том же гене, их потомок может унаследовать две мутантные копии этого гена и не получить ни одной нормальной такой организм погибнет, и вместе с ним будут утрачены мутантные копии гена. Чем больше распространен в популяции мутантный ген, тем быстрее он будет элиминироваться. В результате устанавливается равновесие между скоростью элиминации мутантного аллеля и скоростью его образования за счет новых мутаций. При равновесии мутантный аллель встречается в популяции достаточно редко (хотя и значительно чаще, чем это было бы у гаплоидного организма) подавляющее большинство особей будут действительно диплоидными по данному локусу-у них будут две функционирующие копии гена. Сходным образом обстоит дело и с теми рецессивными мутациями, которые просто вредны, но не легальны. [c.11]

    Далее было показано, что во многих случаях мутации, первоначально определявшиеся чисто операционально как дискретные фенотипические признаки, обязанные своим существованием конфигурационным изменениям аллелей различных гипотетических генов, сопровождаются наблюдаемыми структурными изменениями небольших, но вполне определенных участков хромосом. Наконец, оказалось, что порядок расположения таких морфологически различающихся участков на хромосоме совпадает с порядком расположения мутантных локусов на генетической карте (фиг. 155). [c.478]

    Таким образом, аллели А ж В доминируют над своими мутантными аллелями а ж Ь. Функционально активная генетическая единица в даннохМ случае состоит из двух сегментов, или цистронов,— А ж В,— которые располагаются рядом на генетической карте. Каждый цистрон в отдельности контролирует синтез специфической молекулы, которая, однако, сама по себе неактивна даже будучи абсолютно неповрежденной. Продукты цистронов А ж В должны объединиться для того, чтобы возникла активная структура. Мутации в каком-либо из двух цистронов приводят к синтезу дефектной молекулы, не способной к образованию активного продукта нри взаимодействии с нормальным продуктом второго цистрона. Естественно предположить, что генетическая единица функции — ген или цистрон — кодирует субъединицу белка — индивидуальную полипептидную цепь. Допустим, что функционально активный белок состоит из п полипептидных цепей (субъединиц), связанных друг с другом ковалентными или другими связями. Для кодирования такого белка необходимо п цистронов. Поэтому мы и предполагаем существование двух полипептидных цепей, соответствующих двум цистронам области гП. Если активный белок состоит из одной полипептидной цени, то ген, кодирующий этот белок, эквивалентен цистрону. Если даже мутация Л ->- а или В Ъ приводит к полному отсутствию соответствующего полипептида или к образованию совершенно искагкенного полипептида, несомненно, что до тех пор, пока в клетке имеются нормальные аллели, детерминирующие полипептидные субъединицы А и В, внутриклеточный фонд будет содержать некоторое количество этих субъединиц. [c.494]


    Экспериментальные данные показывают, что только в отношении мутантов М-5684 и М-5703 с некоторой натяжкой можно говорить об одном мутационном изменении. У этих мутантов произошел переход аллеля из доминантного в рецессивное состояние. У остальных мутантов по крайней мере два гена перешли из рецессивного состояния в доминантное. Биохимические изменения, ускользающие от непосредственного наблюдения, также обусловлены генетически их выявление позволяет увеличить число мутационных перемен. Поэтому было решено дополнить полученные данные биохимическими исследованиями белков мутантных форм в Мз. [c.86]

Рис. 27.1. Ускоренное распространение в популяции мутантного аллеля (а), сцепленного с доминантным аллелем (В), которому сильно благоприятствует отбор. Рис. 27.1. Ускоренное распространение в <a href="/info/1895250">популяции мутантного</a> аллеля (а), сцепленного с <a href="/info/700380">доминантным аллелем</a> (В), которому сильно благоприятствует отбор.
    В генофонде данной скрещивающейся внутри себя популяции происходит непрерывный обмен аллелями между особями. Если частоты аллелей не изменяются в результате мутаций, то происходящая при таком обмене перетасовка генов ведет к генетической стабильности или к равновесию в генофонде. В случае возникновения мутантного аллеля он распространится по всему генофонду в результате случайного оплодотворения. [c.319]

    Две особи, несущие мутантный аллель, спариваются [c.321]

    Гомозиготный мутантный аллель проявляется в фенотипе [c.321]

    Рецессивный мутантный аллель может быстро распространиться в популяции, если его локус в хромосоме сцеплен (находится в тесной близости) с локусом какого-либо доминантного аллеля, имеющего важное функциональное значение и подвергающегося сильному положительному отбору. При таком сцеплении шансы мутантного аллеля соединиться с другим мутантным аллелем и оказаться в гомозиготном состоянии сильно возрастают (рис. 27.1). [c.321]

    Влияние каждого данного мутантного аллеля может варьировать. Мутации, затрагивающие аллели, контролирующие важные функции, вероятнее всего окажутся летальными и будут немедленно элиминированы из популяции. Эволюционные изменения происходят обычно в результате постепенного появления мутантных аллелей, производящих небольшие прогрессивные изменения в фенотипических признаках. [c.321]

    У одного из родителей ген, определяющий спектр литического действия, относится к /г-типу, а ген, определяющий лизирующую способность, — к г - или дикому типу, тогда как соответствующие им гомологичные гены другой родительской формы относятся к дикому типу (/г ) и мутантному г-типу. В соответствии с терминологией классической генетики Н н Н , г и можно назвать аллелями, или альтернативными состоя [c.288]

    Если элементарное мутационное событие представляет собой [включение неправильного нуклеотида в определенный участок синтезируе-мой полинуклеотидной реплики и если ДНК вегетативного фага реплицируется в соответствии с полуконсервативным механизмом Уотсона и Крика, то мы можем предсказать такую особенность вновь рождаюш егося мутантного генома, которую без знания молекулярной основы процесса мутирования вообще невозможно было бы предвидеть. Предположим, что во время синтеза цепи-реплики происходит одна из редких ошибок копирования, например остаток тимина в родительской цепи незаконно спаривается с гуанином, а не с аденином. В результате этого мутагенного акта репликации возникает двойная спираль с исходной ин-формацией в старой (родительской) цепи и мутантной информацией в цепи, синтезированной заново (фиг. 160). При следующем цикле репликации комплементарные нити этой мутантной молекулы вновь разъединяются и каждая из них, функционируя как матрица, синтезирует новую комплементарную цепь. В результате появляется одна двойная спираль ДНК, несущая мутантную информацию в обеих цепях, и одна немутантная двойная спираль. Исходная мутантная молекула ДНК представляет собой, следовательно, гетеродуплексную гетерозиготу, которая несет в одном участке два аллеля — мутантный и немутантный, по которым при следующем цикле репликации происходит расщепление. Можно ожидать, что во время внутриклеточного размножения фага некоторые молекулы ДНК фага с мутацией, возникшей в результате ошибки копирования при последней репликации, будут извлечены из вегетативного фонда фага и войдут в состав зрелых инфекционных частиц. Эти частицы и будут мутационными гетерозиготами. [c.325]

    Неполная пенетрантность (In omplete penetran e) Частичное проявление конкретного аллеля в группе родственных организмов. Характерна для большинства мутантных аллелей. [c.554]

    Ход эволюции в значительной мере зависит от мутаций, которые изменяют существующие гены, образуя вместо них новые аллели (варианты) этих генов. Предположим, что у двух особей в некоторой популяции возникли благо-приятшле мутации, затрагивающие разные генетические локусы, а значит, и разные функции. У бесполого вида каждая из этих особей даст начало клону Мутантных потомков, и два новых клона будут конкурировать до тех пор, пока один из них не одержит верх. Один из благоприятных аллелей, появившихся благодаря мутациям, будет, таким образом, распространяться, тогда как другой в конце концов исчезнет. Обе мутации одновременно не могут быть полезны для представителей данного вида, если они не возникнут последовательно в одной и той же клеточной линии а пожольку благоприятные мутации редки, пройдет, как правило, много времени, прежде чем это случится. Напротив, у вида, размножающегося половым способом, новые полезные аллели, появившиеся благодаря мутациям в разных локусах у разных особей. [c.9]


    Время от времени у всех организмов происходит спонтанное удвоение генов хромосома, содержащая одну копию гена G, в результате опшбки в репликации ДНК дает начало хромосоме, в которую входят уже две копии этого гена, расположенные одна за другой. Такие дупликации сами по себе не дают никаких преимуществ и встречаются, как правило, у очень немногих особей. Предположим, однако, что дупликация произошла в локусе, содержащем полезный мутантный аллель G, который с высокой частотой присутствует в популяции в связи с отбором в пользу гетерозигот и сосуществует в геноме с исходным аллелем G (рис. 14-7). Тогда велика вероятность того, что в диплоидной клетке, содержащей хромосому GG (несущую дупликацию), ее гомолог будет содержать аллель G, так что получится генотип GGjG. Затем в результате генетической рекомбинации в мейозе (см. ниже) могут образоваться гаметы с генотипом GG. В этих гаметах исходный ген G и мутантный G, расположенные один за другим, не будут уже двумя аллелями, конкурирующими за один и тот же локус теперь зто два отдельных гена, каждый из которых занимает собственный локус. Такая комбинация выгодна, и она станет быстро распространяться, пока наконец вся популяция не будет состоять из гомозигот GG /GG (см. рис. 14-7). Преимущество особей с таким генотипом состоит не только в обладании обоими генами-старым G и новым G, но и в том, что они могут передавать это преимущество всем своим потомкам. [c.13]

    Мутантный аллель С быстро распространяется в популяции, так как гетерозиготное состояние дает некоторое преимущестао [c.14]

    Редко, однако, бывает, чтобы мутантный ген немедленно по возникновении обладал благоприятным эффектом. В боль шинстве случаев потенциальные возможности мутантной фор мы выявляются лишь в результате рекомбинации. У пере крестнооплодотворяющихся организмов постоянная перегруп пировка генов вызывает генотипические различия между всеми особями, кроме монозиготных двоен. Наряду с этим происходит генотипическая адаптация к условиям внешней среды, в процессе которой неподходящие комбинации генов элиминируются, а лучшие становятся преобладающими. Когда происходит новая мутация, то новый аллель комбинируется с другими генами, составляющими ту генотипическую среду, в которой появился мутантный аллель. Благодаря естественному отбору (или искусственному отбору у культурных растений и домашних животных) постепенно генотипической средой мутантного гена станет та, в которой он обеспечит наилучшую жизнеспособность и плодовитость либо другие благоприятные признаки. Таким образом, мутантный ген, первоначально обладавший бесспорно вредным эффектом, имеет известные возможности стать безвредным или даже полезным для организма в результате изменения генотипической среды. [c.202]

    На международном генетическом конгрессе, происходившем в 1927 г. в Берлине, Мёллер смог сообщить, что он определил частоту спонтанных мутаций в Х-хромосоме плодовой мушки и что после облучения частота этих мутаций очень сильно увеличилась. Это увеличение частоты мутаций в несколько сот, а то и тысяч раз зависело от дозы облучения, а в некоторых опытах практически у каждой особи было обнаружено по одному или по нескольку вновь возникших мутантных признаков. Мёллер сообщил также, что экспериментально индуцированные мутации были аналогичны спонтанным и что некоторые из индуцированных мутаций, как показал генетический анализ, оказались либо идентичными спонтанным мутациям, либо представляли собой новые аллели уже известных ранее локусов. Далее было установлено, что индуцированные мутации распределены по всей длине хромосом и возникают в Х-хромосоме с такой же частотой (в расчете на единицу длины), как и в аутосомах. Особенно важно подчеркнуть, что эти индуцированные мутации оказались стабильными, т. е. представляли собой постоянные изменения наследственной основы организма. [c.209]

    С целью изучения генетических особенностей мутантной семьи из нее в 1971 — 1972 гг. выделено 1738 линий, которые исследовали в селекционных питомниках. Установлепо, что появление аль-биносных растений связано с рецессивной мутацией аллеля АА. В потомстве линий с генотипом Аа наблюдали почти идеальное расщенление в отношении 3 1 (три зеленых, один альбинос). Па-ряду с альбиносами, некоторые линии выщепляли формы с мужской стерильностью, что связано с рецессивной мутацией гена ММ. [c.134]

    Опыты проведены на 33 индуцированных мутантных линиях гороха (хлорофильные, карлики, с измененной формой листочков, цветков и бобов, скороспелые, без воскового налета). При скрещивании мутантов с исходными сортами во всех случаях в Рг наблюдали моногибридное расщепление на исходную форму и мутант в соотношении 3 1. Гетерозйготу по-мутантному гену сравнивали с гомозиготами по нормальному и мутантному аллелям по признакам высота растений, число бобов, число и вес семян на одно растение. Высокий гетерозисный эффект обнаружен по мутациям карликовости и хлорофильным, обусловливающим в гомозиготе желто-зеленую окраску листьев. Некоторые мутации вызывали одинаковую депрессию развития в гомозиготном состоянии, но оказывали неодинаковое влияние на развитие организма в гетерозиготном состоянии. Выявлены различия по гетерозисному эффекту у реципрокных гибридов, полученных от скрещивания мутантов с исходным сортом. На примере аллельных мутантов, индуцированных у разных сортов, показано, что влияние мутантногО гена на развитие организма в значительной степени зависит от генотипической среды. [c.344]

    Если же образовывалась зигота Hfry+Zi"o i + X F y z+o i , то конститутивным оказывался синтез обоих ферментов — галактозидазы и пермеазы. Индекс z означает следующий интересный случай мутации. Цистрон z в соответствующем штамме давал начало не активному ферменту галактозидазе, а измененному белку без ферментативной активности. Белок можно было очистить и идентифицировать но иммунологической реакции. Иммунологическая специфичность мутантного белка совпадала oi специфичностью галактозидазы. В случае рассматриваемой выше зиготы под действием индуктора начинала действовать первая хромосома с аллелью z " и синтезировался измененный белок — мутант. Без индуктора же синтез белка не шел, так как цистрон Zi находился в положении trans к гену-оператору о=, позволявшему синтезировать ферменты без индукции. [c.493]

    На глобуле регуляторного фермента имеется несколько специфических сайтов взаимодействия с низкомолекулярными веществами. Такими сайтами являются активный центр, аллостерические центры, центры посадки на мембрану. У некоторых ферментов количество таких специфических сайтов к различным веществам достигает десяти. Таким ферментом является, например, глутаминсинтетаза, у которого имеется активный центр и по крайней мере восемь центров для связывания различных веществ [10]. В основном количество сайтов определенного типа равно количеству субъединиц в ферменте, а на каждой субъединице имеются все сайты специфичности. В результате мутации может измениться один из таких сайтов, и тогда фермент, состояпц й из субъединиц только такого типа, изменит свои регуляторные свойства. Такими изменениями могут быть полная или частичная утрата чувствительности к эффектору, появление более сильного сродства к тому же самому или возникновение специфичности к новому эффектору. Если в клетке присутствуют нормальный и мутантный аллели, то в ней будут находиться изоферменты как нормальные, так и с мутантными субъединицами., У гибридных изоферментов изменение активности в зависимости от концентрации эффектора будет промежуточным по сравнению с белком, составленным из одних только нормальных субъединиц, и максимально измененным для белка, составленного из субъединиц только мутантного типа. При этом закон изменения активности под действием эффектора у фермента, состоящего из мутантных субъединиц, будет определяться типом взаимодействия между специфическими центрами. [c.101]

    Изучить такое сложнейшее явление, как гетерозис, очень трудно, необходимо исследование на элементарной модели. Такой моделью в последнее время стал моногенный или моногиб-ридный гетерозис (Беляев, Евсиков, Шумный, 1968), при котором исследователь имеет дело с гетерозиготностью по одному гену или блоку генов, маркированных одним аллелем. Для получения таких гибридов необходимо иметь высокогомозиготные линии и выделенные из них мутанты. Скрещивание мутантов с исходной линией и приводит к гетерозиготности по одному мутантному гену. Естественно, что, имея гетерозиготы по отдельным генам, исследователь может сочетать эти гены для изучения простых взаимодействий генов (по два, три, четыре гетерозиготных локуса). [c.7]

    Томаты имеют 12 групп сцепления, из которых наиболее изучены 11. Например, мутантный ген у — отсутствие окраски эпидермиса у плодов (соответственно его нормальный аллель У — эпидермис у плодов окрашен)—локализован в первой группе сцепления (Barton и др., 1955). Ген в данном случае до- [c.131]

    Такое перемещение аллелей в пределах популяции называют потоком генов , но строго говоря, этот термин относится к перемещению аллелей из одной популяции в другую в результате скрещивания между членами этих двух популяций. Случайное внесение новьгх аллелей в реципиентную популяцию и удаление их из донорной популяции изменяет частоту аллелей в обеих популяциях и ведет к повышению генетической изменчивости. Несмотря на то что поток генов вносит в популяции генетическую изменчивость, в смысле эволюционного изменения его действие оказывается консервативным. Распространяя мутантные аллели по всем популяциям, поток генов приводит к тому, что все популяции данного вида приобретают общий генофонд, т. е. различия между популяциями уменьшаются. Поэтому прерывание потока генов между популяциями служит одной из предпосылок для образования нового вида. [c.320]

    Растительные мутанты, неспособные формировать клубеньки (Nod) или индуцировать в них азотфиксирующую активность (Fix ), отбирают по признаку угнетенного роста на безазотной среде. У бобовых (горох, соя, клевер, люцерна, фасоль, нут, кормовые бобы, донник) с использованием таких мутантов идентифицировано более 100 генов, участвующих в становлении и функционировании симбиоза (табл. 4.2). Более 40 генов выявлено у гороха посевного (Pisum sativum L.) — одного из наиболее удобных объектов для изучения генетики симбиоза. Мутантные аллели, контролирующие неспособность растений к образованию клубеньков, являются, за редким исключением, рецессивными. Аллели, контролирующие неспособность к азотфиксации, могут быть как рецессивными (горох, клевер, люцерна), так и доминантными (соя). Иногда мутации, нарушающие развитие симбиоза, влияют на морфологию, скорость развития и фертильность растений. [c.173]

    В лаборатории можно развести огромное число дрозофил, что дает возможность обнаружить большое разнообразие наследственных вариантов, или мутантов. К 1915 г. Морган и его сотрудники обнаружили 85 различных мутантных типов дрозофилы, отличающихся от мух нормального, или дикиго, типа размером крыльев, окраской тела, цветом глаз, размером глаз и формой щетинок. Каждый из этих мутантов обнаруживался как отдельный, отклоняющийся от нормы индивидуум среди потомства, состоящего из тысяч нормальных мух. Поэтому был сделан вывод, что каждому из этих отклонений от нормы (мутантный признак) мухи обязаны своим возникновением в результате редкой спонтанной мутации тою гена, который контролирует этот признак. (В 1927 г. Г. Мёллер, ранее работавший с Морганом, показал, что облучение мух рентгеновскими лучами сильно повышает частоту мутирования этих генов по сравнению с частотой спонтанных мутаций.) Наличие этих мутантов сделало возможным проведение обширных опытов по скрещиванию, которые были поставлены для того, чтобы еще глубже, чем это было возможно ранее, проникнуть в тайну механизмов наследственности. Скрещивания двойных мутантов, т. е. мух, несущих два мутантных гена в двух разных хромосомах, с нормальными мухами, несущими соответствующие аллели дикого типа, вскоре подтвердили результаты, полученные Менделем на горохе. Рецессивные признаки исчезали в первом дочернем поколении и вновь появлялись, но уже в случайном сочетании среди мух второго дочернего поколения. Но когда стали проводить подобные дигибридтые скрещивания с мухами, у которых оба мутантных гена находились в одной и той же [c.27]

    Каждый ген назван в соответствии с тем аномальным признаком, который проявляется при наличии внределенного мутантного аллеля. Признаки, начннающиься с прописной буквы, соответствуют доминантной мутации, а те признаки, которые начинаются со строчной буквы, соответствуют рецессивной мутации. Слева от каждого признака приведено положение на карте , определенное из частот кроссинговеров. Хромосома I — это Х-хромосома. Содержащая мало признаков хромосома IV — это крошечная, похожая на точку хромосома, пара которых показана на фиг. 9 [c.29]

    Бензер решил установить, не обусловлен ли фенотип гП-мутантов из его коллекции повреждениями более чем в одной функциональной единице. То обстоятельство, что два г11-мутанта при разнообразных экспериментальных условиях проявляют один и тот же фенотип, само по себе вовсе не гарантирует, что соответствующие мутационные изменения затрагивают одну и ту же функциональную единицу. Мы уже упоминали, например, что стерильные пятна типа г на обычных штаммах Е. соИ образуются при разных мутациях, удаленных друг от друга настолько сильно, что вряд ли они затрагивают одну и ту же функциональную единицу. И если разные гП-мутанты неспособны размножаться на непермиссивных штаммах К, то это не обязательно означает, что всем им свойствен один и тот же функциональный дефект генетического материала. Для выяснения принадлежности двух различных мутаций гП к одной и той же функциональной единице Бензер воспользовался так называемым цис-транс-те-стом, или тестом на комплементарность (фиг. 153), приспособив его для-работы с фагами. Этот тест был разработан ранее применительно к высшим организмам стой же целью, т. е. для изучения природы функциональной единицы. Комплементационный тест Бензера был основан на том, что на штамме К, зараженном одновременно гИ-мутантом и фагом дикого типа г, оба типа размножаются нормально. Это означает, что нормальный ген родительского фага дикого типа способен обеспечивать функцию, необходимую для размножения на штамме К не только фага дикого типа, но и дефектного гП-мутанта. На языке генетики можно сказать, что при смешанном заражении штамма К двумя фагами ген дикого типа г доминирует над мутантным аллелем гН. В тесте на комплементарность клетки штамма К заражают двумя гИ-мутантами (каждый из которых в одиночку не способен размножаться на штамме К), чтобы выяснить, смогут ли они при смешанном заражении помогать друг другу и образовывать инфекционное потомство. Если два мутанта способны к такому совместному размножению, то это означает, что две мутации этих мутантов локализованы в разных функциональных единицах фагового генома. Неспособность одного из мутантов размножаться на штамме К (иными словами, его фенотип гН) свидетельствует о том, что этот мутант неспособен осуществлять какую-то определенную функцию или вызывать синтез какого-то определенного белка, необходимого для размножения фага в зараженной клетке. Фенотип гП второго мутанта также свидетельствует о неспособности осуществлять какую-то необходимую функцию, но только другую, т. е. [c.310]

    В 1959 г. Д. Пратт сумел показать, что большинство, если не все бромурациловые ревертанты г+, образуемые мутантами гП (которые были индуцированы аналогами оснований), возникают в виде гетерозигот гП/г" , которые позднее расщепляются на гомозиготные ревертанты г" ". Чтобы продемонстрировать это, к бактериям, зараженным мутантным фагом Т4гП, непосредственно перед окончанием скрытого периода внутриклеточного развития фага добавляли бромурацил и первые инфекционные частицы, появившиеся в клетках непосредственно после окончания скрытого периода, высвобождали путем искусственного лизиса клеток. Такая методика постановки опыта гарантировала, что все ревертанты / +, возникшие и извлеченные из фонда предшественников фаговой ДНК во время короткого воздействия мутагена, образовались исключительно в самом последнем цикле репликации. Ошибка копирования, восстановившая у них в соответствующем участке ДНК генетическую информацию дикого типа г+, произошла настолько поздно, что больше и и одного цикла репликации произойти уже не могло (а это значит, что не могло произойти и расщепления на гомозиготные мутантные структуры). Такого рода опыты показали, что свыше 80% всех ревертантов г, возникших в результате кратковременного контакта с бромурацилом, действительно представляет собой мутационные гетерозиготы, несущие как исходный аллель г, так и ревертировавщий к дикому типу аллель г" . Следовательно, в полном соответствии с механизмом Уотсона и Крика и вопреки механизмам, предусматривающим консервативное распределе- [c.325]

    С самого начала было ясно, что данные о поведении сцепленных генетических локусов при трансдукции значительно бы облегчили изучение механизма, с помощью которого фаговые частицы захватывают отдельные фрагменты генома донора и впоследствии переносят эти фрагменты в геном клетки-реципиента. Поэтому оставалось только сожалеть, что трансдукция была обнаружена в то время лишь у сальмонелл, к 1950 г. еще мало изученных в генетическом отношении, а не у . соИ, у которой с помощью конъюгационного анализа уже удалось установить сцепление для многих мутантных локусов. Тем с большей радостью было встречено открытие Е. Леннокса, обнаружившего, что умеренный фаг Р1 способен трансдуцировать генетические признаки Е. соИ от клеток-доноров к клеткам-реципиентам. Благодаря этому открытию удалось показать, что никогда не трансдуцируются совместно те генетические маркеры, для которых уже показано, что на хромосоме Е. oli они отстоят далеко друг от друга. Одновременно было показано, что два сцепленных гена ihr и leu (фиг. 123), контролирующие синтез двух аминокислот, треонина и лейцина, иногда трансдуцируются совместно и что частота такой совместной трансдукции составляет около 1%. Это значит, что приблизительно 1% бактерий-реципиентов Thr , получивших от донора аллель ihr, получают от него также и аллель leu (неселективный маркер). Расстояние между генами ihr и leu равно приблизительно 2% общей длины генома Е. соН, [c.355]


Смотреть страницы где упоминается термин Аллели мутантные III: [c.368]    [c.189]    [c.442]    [c.13]    [c.83]    [c.151]    [c.275]    [c.199]    [c.214]    [c.114]    [c.234]    [c.235]    [c.294]    [c.295]    [c.347]    [c.353]    [c.360]    [c.360]   
Биология Том3 Изд3 (2004) -- [ c.320 , c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Аллели



© 2025 chem21.info Реклама на сайте