Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ковалентная связь другие методы

    Количественная теория химической связи развивается в настоящее время на основе выводов и методов квантовой механики. Теория ковалентной связи, предложенная Гейтлером и Лондоном (1927) первоначально для описания молекулы Нг, при дальнейшем развитии получила распространение и на другие случаи ковалентной связи. Она описывает ковалентную связь, рассматривая состояние электронов данной электронной пары с помощью уравнений волновой функции Шредингера. Такое рассмотрение получило название метода валентных схем (ВС) или метода локализованных электронных пар. Можно показать, что при образовании связи с помощью -электронов необходимо, чтобы электро- [c.66]


    Краткие основы теории молекулярных орбиталей. Метод валентных связей, давая наглядное представление об образовании и структуре многоатомных частиц, не всегда объясняет ряд свойств веществ, например спектральные и магнитные характеристики, природу образующихся связей, вклад неспаренных электронов в образование связей. Многие из этих факторов получают удовлетворительное объяснение при использовании другого подхода к объяснению и расчету ковалентной связи, получившего название теории, или метода, молекулярных орбиталей (ММО). [c.66]

    О появятся две электронные пары и неспаренных электронов в молекуле О2 не будет. Однако исследование магнитных свойств кислорода свидетельствует о том, что в молекуле О2 имеются два неспаренных электрона. Ряд исследователей предприняли попытки усовершенствовать метод валентных связей и сделать его пригодным для истолкования этих ф актов. Однако более плодотворным оказался другой подход к объяснению и расчету ковалентной связи, получивший название метода молекулярных орбиталей (сокращенное обозначение метод МО). Значительный вклад в его [c.99]

    Для кристаллов с ковалентной связью согласно методу молекулярных орбиталей форма орбиталей, отвечающая свободным оборванным связям, представляет собой два лепестка, один из которых направлен наружу, а другой — внутрь кристалла от поверхностного атома, на котором электронная плотность равна нулю. [c.42]

    Надо совершенно ясно представлять себе, что приближенный метод, с которым мы здесь познакомились, является лишь одним из многих возможных. Другой подобный метод описан в следующем разделе. Однако рассмотренный метод и полученные результаты полезны, поскольку соответствуют привычной картине так называемой атомной или ковалентной связи (метод валентных связей). Для наглядности такие связи изображаются с помощью пары точек (пара электронов) (Н Н) или черточки (Н—Н). Понятие валентности и явление насыщения химической связи хорошо объясняются с помощью метода валентных связей (разд. 6.3). [c.87]

    Первоначально сложилось представление об эффективных радиусах атомов, проявляющихся в их действиях, т.е. в химических соединениях. Эффективные радиусы определяли из экспериментальных данных по межъядерным расстояниям в молекулах и кристаллах. При этом предполагалось, что атомы представляют собой несжимаемые шары, которые соприкасаются своими поверхностями в соединениях. При определении значения эффективного радиуса из межъядерных расстояний в ковалентных молекулах подразумевали ковалентные радиусы, при вычислении их из данных для металлических кристаллов — металлические радиусы. Наконец, эффективные радиусы, рассчитанные для кристаллов с преимущественно ионной связью, назывались ионными радиусам[и. Для этого определяли радиус какого-нибудь иона, а затем вычисляли ионные радиусы других элементов из экспериментальных данных по межъядерным расстояниям в кристаллических решетках. Так, с помощью оптических методов, а затем расчетом был определен радиус аниона фтора, равный 0,11.3 нм. А расстояние между атомами Na и Г в решетке МаГ было установлено равным 0,231 нм. Отсюда радиус иона Ма равен 0,231 — 0,113 = 0,118 нм. Металлические радиусы получены делением пополам расстояния между центрами двух смежных атомов в кристаллических решетках металлов. Ковалентные радиусы неметаллов также вычислены как половина межъядерного расстояния в молекулах или кристаллах соответствующих простых веществ. Для одного и того же элемента эффективные радиусы (ковалентный, ионный, металлический) не совпадают между собой. Это свидетельствует о зависимости эффективных радиусов не только от природы атомов, но и от характера химической связи, координационного числа и других факторов (см. табл. 4). Изменение эффективных радиусов атомов носит периодический характер (рис. 22). В периодах по мере роста заряда ядра эффективные радиусы атомов уменьшаются, так как происходит стягивание электронных слоев к ядру (при постоянстве их числа для данного периода). Наибольшее уменьшение характерно для 5- и р-элементов. В больших периодах для и /-элементов наблюдается более плавное уменьшение эффективных радиусов, называемое соответственно г- и /сжатием. Эффективные радиусы атомов благородных газов, которыми заканчиваются периоды системы, значительно больше эффективных радиусов предшествующих им р-элементов. Значения эффективных радиусов благородных газов (см. табл. 4) получены из межъядерных расстояний в кристаллах этих веществ, существующих при низких температурах. А в кристаллах благородных газов действуют слабые силы Ван-дер-Ваальса в отличие, например, от молекул галогенов, в которых имеются прочные ковалентные связи. [c.52]


    Валентность. Как известно, под валентностью подразумевается свойство атома данного элемента присоединять или замещать определенное число атомов другого элемента. Мерой валентности поэтому является число химических связей, образуемых данным атомом с другими атомами. Таким образом, в настоящее время под валентностью химического элемента обычно понимается его способность (в более узком смысле — мера его способности) к образованию химических связей. В представлении метода валентных связей численное значение валентности соответствует числу ковалентных связей, которые образуют атом. [c.66]

    Теория ковалентной (гомеополярной) связи. Метод валентных связей. Связь называется ковалентной (гомеополярной), если образующие ее атомы обладают близким сродством к электрону. В этом случае не происходит преимущественной передачи электрона какому-либо атому. Оба валентных электрона в равной степени принадлежат тому и другому атому. Обычно ковалентная связь образуется за счет обобществления электронов, ранее принадлежавших двум отдельным атомам. Например, в процессе взаимодействия атомов [c.21]

    Параллельные слои имеют изгибы и непрерывные переходы от одной сферической частички к другой. Особенно четко эти переходы прослеживаются на графитированных образцах. Таким образом, первичный агрегат не является просто продуктом агломерирования нескольких ковалентных связей частичек, которые сталкиваются после отверждения и образуют взаимосвязанную полиэдрическую сетку. Отдельные плоские параллельные участки пачек слоев, наблюдаемые в электронном микроскопе, соответствуют размерам кристаллитов, определяемым рентгеновским методом. По данным рис. 4-3,г, Ьа = 7,5 нм и = [c.198]

    Природа ковалентной связи значительно сложнее, чем ионной, и объясняется лишь на основе квантовой механики причем строго количественное исследование возможно пока что для простейших молекул (Нг, Н2 и некоторых других). Для сложных соединений решение уравнения Шредингера производится с помощью приближенных методов, дающих чаще всего только качественные результаты. [c.21]

    Сравнение последнего соотношения с применявшимися ранее в методе ВС функциями + показывает, что в методе МО волновая функция Ч отличается третьим и четвертым членами. Оба эти члена характеризуют случаи, когда два электрона находятся либо у одного, либо у другого ядра, т. е. соответствуют ионным состояниям молекулы На — Ш к Н — Нь. В действительности роль таких состояний в характеристике МО невелика и составляет около 6 % от энергии обменного взаимодействия, которым определяется ковалентная связь. [c.26]

    Таким образом, ТПЛ (метод МО ЛКАО) отражает реальное существование определенной ковалентности связи в комплексных соединениях. Достигая тех же результатов, что и ТКП, метод МО ЛКАО превосходит ее, учитывая возможности образования других связей, помимо чисто электростатических. Поэтому в теории поля лигандов получила объяснение химическая связь не только в ионогенных, но и в таких координационных соединениях, как соединения металлов с олефинами, в карбонилах металлов, сэндвичевых и других соединениях, где лигаНды — малополярные или неполярные молекулы и поэтому электростатическая природа связи металл — лиганд исключается. [c.250]

    Электронное строение молекулы кислорода. Характер химической связи в молекуле кислорода О2, а соответственно и некоторые свойства молекулярного кислорода необъяснимы с позиций теории общих электронных пар, рассмотренной в 3.7. Однако они становятся понятны при использовании другого способа описания ковалентной связи — метода молекулярных орбиталей. Не вдаваясь в суть этого метода, укажем лишь некоторые его постулаты  [c.355]

    Другие свойства валентности объясняются в рамках метода валентных связей так же, как и "соответствующие свойства ковалентных связей. [c.84]

    Инертный носитель может быть полиуретаном или полимером другого типа либо природным полимером (например, коллаген, легко выделяемый из шкур животных). Подвижный мостик присоединен к функциональной группе на полимерном геле. Длина мостика — важный параметр, так как свободный конец должен быть способен образовать ковалентную связь с функциональной группой фермента, не влияя на ферментативную активность. Такой фермент, пришитый к матрице, обычно называют иммобилизованным, ферментом [122—125]. В отличие от широко распространенного метода аффинной хроматографии в данном случае фермент, а не субстрат ковалентно сшпт с твердым носителем. Однако принцип биоспецифического узнавания тот же. [c.257]

    В связи с этим важное значение имеет другой метод объяснения ковалентной связи — метод молекулярных орбиталей.  [c.90]

    Энергия ковалентной связи измеряется работой, которую надо совершить для разрыва этой связи. Энергии связей на практике определить проще всего из термохимических данных, т. е. при изучении тепловых эффектов реакций, однако их можно получить и многими другими методами. Выражают энергии связи в килоджоулях на моль. Очевидно, что, чем больше энергия какой-либо связи, тем труднее такую связь разорвать. [c.86]


    Начало одному из методов было положено работой В. Гейтлера и Ф. Лондона (1927). Они впервые объяснили природу сил в молекуле водорода. В 30-х годах эти идеи были развиты Слейтером и Полингом для многоатомных молекул. Их представления получили название — спиновая теория валентности, или метод электронных пар. Параллельно с указанным плодотворно развивается другой подход к объяснению ковалентной связи, получивший название метода молекулярных орбиталей (Гунд, Милликен, Хюккель, Леннард-Джонс, Коулсон). [c.87]

    Метод ВС не может интерпретировать металлическую связь. В металлах с их высокими координационными числами наблюдается сильный недостаток вален р-ных электронов по сравнению с двухэлектронной и двухцентровой ковалентной связью. С точки зрения ММО металлическая связь характеризуется дефицитом электронов против нормальной ковалентной связи. Поэтому порядок связи в металлах и истинных металлидах может быть любым дробным числом. Отсюда металлиды, как правило, не подчиняются правилам классической валентности, т.е. ковалентности. Из-за этого для истинных металлидов невозможно предсказать их формульный состав на основе классических представлений о валентности, а потому здесь нужны другие концепции. [c.95]

    Молекулы азота N2 очень прочны. Даже при 3000 °С степень диссоциации молекул N2 на атомы достигает всего лишь 0,1 %. По методу валентных связей прочность молекулы N2 можно объяснить образованием трех ковалентных связей (одной ст и двух л), поскольку в каждом атоме азота на энергетическом 2р-подуровне есть три неспаренных электрона (см. рис. И.З). При невысоких температурах азот химически инертен. Именно поэтому в природе устойчивы молекулы N2. При температуре более 300 °С азот энергично взаимодействует с литием, образуя нитрид LI3N. При более высоких температурах — с магнием, алюминием и некоторыми другими металлами и неметаллами, образуя нитриды (см. IX.3). [c.277]

    В ряде случаев выделение отдельных ассоциатов либо соединений невозможно и вся Ж. становится одним ас-социатом , в к-ром происходит образование и разрыв водородных или ковалентных связей (напр., ЗЮ , Н О при низких т-рах см. также Вода). Последовательная статистич. теория таких Ж. пока далека от завершения для исследования широко используют численные эксперименты, а также методы статистич. геометрии, основанные на моделях случайных сеток, и нек-рые другие. [c.155]

    Система, описанная в работе [6], является дальнейшим развитием предыдущей в том плане, что учитывается пространственное строение молекул. Как и ранее, синтез ведется от конца к началу (от продуктов реакции к исходным веществам) по заранее определенному набору химических реакций. Аналогичный подход использован в системе [10]. Более обоснованными и перспективными являются методы, основанные на математическом описании структуры молекул и химических реакций и классифицируемые как логические методы [8, И]. В работе [8] для представления молекулы в качестве параметров используются тип атома и топо-тогическая структура связей между атомами в молекуле. При том акцент сделан на типы атомов углерода в молекуле в соответствии с природой связи углерода с другими элементами. В работе И] для характеристики молекулы используются три параметра естоположение атома в молекуле, ковалентные связи между томами и свободные электроны в каждом атоме молекулы. Послед- [c.443]

    Соверщенпо ясно, что источником всех молекулярных и атомных сил является в конечном счете взаимодействие составных частей атомов, а именно ядер и электронов. Все эти силы могут быть выведены теоретически при помощи основных уравнений волновоп механики. Однако удобно рассматривать различные виды взаимодействия атомов независимо друг от друга, подобно тому, как это делается в других областях физики и химии, Поэтому, следуя общепринятому методу, мы будем рассматривать в качестве различных и независимо действующих такие силы, как неполярные силы Ван-дер-Ваальса (дисперсионные силы), силы электростатической поляризации атомов или молекул ионами или диполями, кулоновские силы взаимного притяжения или отталкивания между ионами и диполями, обменные силы, приводящие к возникновению ковалентных связей, силы отталкивания, возникающие вследствие взаимного проникновения электронных облаков (с учетом принципа Паули), и т, д. [c.22]

    Пероксид водорода. Современными физико-химическими методами установлено, что оба атома кислорода в пероксиде водорода Н2О2 связаны непосредственно друг с другом неполярной ковалентной связью (рис. 58). Связи же между атомами водорода и кислорода (вследствие смещения общих электронов в сторону кислорода) полярны. Поэтому молекула Н2О2 также полярна. Между молекулами Н2О2 возникает водородная связь, что приводит к их ассоциации с энергией связи О—О, равной 210 кДж это значительно меньше энергии связи Н—О (470 кДж). [c.279]

    Число таких общих электронных пар, связывающих атом данного элемента с другими атомами, или, иначе говоря, число образуемых атомом ковалентных связей, называется ковалентностью по методу ВС (или спинеалентностью — по числу неспаренных электронов, предоставляемых атомом для образования связи) элемента в соответствующем соединении. Так, спинвалентность азота в молекулах N2 и NH3 равна трем, спинвалентность кислорода в молекулах Н2О и СО2 — двум, спинвалентность углерода в молекулах СН4 и СО2 — четырем. [c.105]

    Рассмотренный механизм возникновения ковалентных связей путем обобш,ествления неспаренных электронов двух атомов получил название обменного механизма. Образование ковалентной связи может происходить также при взаимодействии одного атома или иона с заполненной атомной орбиталью с другим атомом или ионом, имеющим вакантную (свободную) атомную орбиталь. Такой механизм образования ковалентной связи называется д о н о р н о-акцепторным. Атом или ион, поставляющий пару электронов, называют донором, а атом или ион, к которому эта пара электронов перемещается, — акцептором. Согласно методу ВС ковалентная связь по донорно-акцепторному механизму возникает при перекрывании вакантной орбитали одного атома или иона с заполненными орбиталями донора или донорной группы. Поэтому донор-ная группа должна содержать по меньшей мере одну неподеленную пару электронов. [c.46]

    Говоря о методе валентных связей, подразумевают, с одной стороны, один из квантово-химических способов расчета электронной структуры молекулы, с другой—связанную с этим способом методику описания и анализа химических связей в системе. Согласно этой методике выделяют валентную группу атомных орбиталей (АО), охватывающую наивысшие по энергии занятые и наииизшие по энергии свободные АО. Образование химической связи рассматривают в духе концепции Льюиса за счет спаривания электронов соседних атомов по схеме А-- - В— -А В (ковалентная связь) или передачи электронной пары от донора к акцептору по схеме А +В—>А В. Таким образом, электронная пара соответствует валентному штриху в структурных формулах. [c.61]

    Важнейшим проявлением специфики электронного строения и вытекающих отсюда химических свойств платиновых элементов является их склонность к образованию комплексных соединений. Элементы-металлы других групп периодической системы, особенно поливалентные элементы переходных рядов, также дают комплексные соединения той или иной устойчивости практически со всеми известными лигандами. Спецификой комплексных соединений платиновых элементов и прежде всего наиболее изученных комплексов платины и палладия является высокая прочность ковалентной связи, обусловливающая кинетическую инертность этих соединений. Последнее даже делает невозможным определение обычными методами такой важной характеристики комплекса, как его /Сует- Обмен лигандами внутри комплекса и с лигандами из окружающей среды также затруднен. Это позволяет конструировать, например, октаэдрические комплексы платины (IV), в которых все шесть лигандов различны. Такие системы могут существовать без изменения во времени состава как в растворах, так и в твердом состоянии. Мы уже отмечали, что, напротив, осуществить синтез столь раз-нолигандмых комплексов для элементов-металлов, образующих пре- [c.152]

    В случае ковалентно-координационной связи в правило определения формального заряда вносится соответствующая поправка оба электрона принадлежат донору, а не акцептору. Таким образом, атомы азота и кислорода в триметиламиноксиде не несут формального заряда. Однако совершенно очевидно, что вид электронной структуры будет таким же, как указывалось выше, и мы можем выбирать, изобразить ли стрелку или разделенные заряды. Некоторые соединения, например амин-оксиды, можно изображать или тем, или иным способом. Проще использовать разделение зарядов, так как это избавляет нас от необходимости рассматривать как некий другой метод связывания тот путь, который на самом деле ничем не отличается от обычного ковалентного связывания, как только связь уже образовалась. [c.28]

    Таким образом, и вещества с дефицитом валентных электронов, по существу, выходят за границы применимости МВС. Факты, не объяснимые существующими теориями, — писал А. М. Бутлеров, — наиболее дороги для науки, от их разработки следует по преимуществу ожидать ее развития в ближайшем будущем . Другой метод квантовой химии — метод молекулярных орбиталей (ММО) — объясняет химическую связь в ковалентных веществах, а также в соединениях с избытком и с дефицитом валентных электронов, 36. Понятие о методе молекулярных орбиталей. Бо. 1ее универсальным квантовохнми-ческим методом описания химической связи служит метод молекулярных орбиталей (ММО), развитый в трудах Леннарда-Джонса, Г унда и особенно Малликена В этом методе состояние электронов в многоатомной системе описывается молекулярными орбиталями (МО), подобно тому как электроны в атомах характеризуются атомными орбиталями (АО). При этом и АО и МО представляют собой одноэлектронные волновые функции атома или молекулы соответственно. Разница заключается в том, что АО — одноцентро-Бые, а МО—многоцентровые орбитали. Итак, ММО — квантовохимический метод описания химической связи, рассматривающий молекулу и другие многоатомные системы, как многоядерный атом , в котором электроны заселяются по молекулярным орбиталям. [c.120]

    Развитие представлений о природе комплексных соединений тесно связано с созданием и развитием общей теории химической связи. Уже в 20-х годах появились первые работы, применявшие идеи ионной и ковалентной связи к комплексным соединениям. Так, Косселю и Магнусу принадлежит большая заслуга в разработке электростатических представлений, а приложение идеи о парноэлектронной связи разрабатывалось в работах Сиджвика. В дальнейшем было разработано три квантовомеханических метода МВС, теория кристаллического поля (ТКП) и ММО. Ни один из этих методов не предназначался для объяснения связи только в комплексных соединениях, но и в этой области применение их оказалось весьма успешным. Они не являются противоположными друг другу. Наоборот, во многих отношениях они дополняют друг друга, трактуя одни и те же вопросы с различных точек зрения, и зачастую приводят к идентичным результатам. [c.160]

    Монокристаллы PbS, PbSe и РЬТе выращивают обычно из паровой фазы при повышенной температуре, контролируя давление паров и стехиометрический состав (гл. IX, 2), и другими методами. Все указанные халькогениды свинца имеют кристаллические решетки типа Na l. Химическая связь между атомами в них по преимуществу ковалентная. В табл. 26 приведена их характеристика. [c.297]

    Наиболее известными и распространенными электронодефицитными веществами являются металлы и металлические соединения — мепгаллиды. Речь идет о металлах в конденсированном состоянии. В газообразном состоянии металлические молекулы ничем не отличаются от других типичных молекул по природе химической связи. Например, молекулы щелочных металлов Ы2, Каг, К2, Сзз, как и молекула водорода Н2, характеризуются парно-электронной гг - -связью. Однако металлы и метгшлиды в их обычном твердом срстоянии коренным образом отличаются от их пара. Возьмем, к примеру, кристаллический литий, объемно центрированнаия решетка которого показана на ршс. 50. Каждый атом лития окружен восемью другими, и один 25-электрон атома лития должен обеспечивать его связи с 8 ближайшими соседями. Следовательно, в металлическом литии существует большой дефицит валентных электронов против парно-электронной двухцентровой ковалентной связи. Это означает, что металлы и металлиды нельзя интерпретировать, оставаясь в рамках МВС. Кроме того, метод локализованных электронных пар не может объяснить такое ярко выраженное свойство металлов и металлидов, как их электрическая проводимость. [c.88]

    Так или иначе, заслуживает уважения воображение ученых, породившее эти замечательные структуры. Но как их синтезировать Задача представляется устрашающей, особенно потому, что существующий развитый арсенал синтетических методов, превосходно приспособленных для решения задачи создания и расщепления ковалентных связей в структурах почти любой сложности, оказывается бесполезным для сборки молекул того типа, которые представлены на схеме 4.33. Здесь стратегическое существо задачи состоит не в том, чтобы тем или иным способом построить фрагменты, составляющие целевую молекулу, а в том, чтобы заставить их образовать подобные геометрические (или, как их часто, но терминологически некорректно называют, топологические ) связи друг с другом в случае систем типа А и В, или замкнуться в цикл, предварительно завязавшись узлом, в случае типа С, Первоначальные попытки синтезов в этой о иасти основывались на достаточно очевидных и прямолинейных стохастических соображениях. Первые успешные синтезы 34,34-катенана (102) (18е] и ротаксана (103) [18f , [c.420]

    Осн. понятие К. в. м. - конфигурац. ф-ция состояния (КФС) -приближенная волновая ф-ция молекулы для заданного электронного состояния, определяемая на основе метода мол. орбиталей как антисимметризованное произведение волновых ф-ций отдельных электронов, составленное с учетом суммарного спина, принципа Паули и симметрии расположения ядер. КФС отвечает определенному распределению электронов по ррбиталям, т. е, определенной электронной конфигурации, и передает особенности волновой ф-ции молекулы лишь в той мере, в какой кулоновское взаимод, всех электронов можно приближенно рассматривать как взаимод. электрона с усредненным полем. Взаимная согласованность движений электронов (электронная корреляция) не описывается одной КФС, однако состояние молекулы можно охарактеризовать неск. КФС, каждая из к-рых выделяет одну из особенностей сложного движения электронов. Напр., а электронном распределении, описывающем хим. связь, одни КФС могут выделять ковалентные, а другие - ионные составляющие связи (см. Валентных связей метод). [c.456]

    Квантовая теория дает более богатую и полную картину М. в ее разл. состояниях по сравнению с классич. теорией хим. строения. Она позволяет прежде всего провести классификацию хим. связей в М. на основе того юш иного характера распределения электр0Ш 0Й плотности (ковалентные связи отвечают примерно симметричному распределению электронной плотности валентных электронов между атомами, образующими такие связи ионные связи отвечают сильному смещению этой плотности к одному из атомов), либо исходя из представлений о происхождении той или иной связи (напр., донорно-акцепторная связь), либо по др. признакам (напр., М. с сопряженными связями или М. с распределенным характером связи). Квантовая теория позволяет также учесть изменения состояний, к-рые возникают при переходе от отдельной изолированной М. к в-ву, состоящему из множества взаимодействующих друг с другом М. при заданных внеш. условиях. И хотя строгие исходные положения квантовой теории требуют, чтобы рассмотрение, напр., двух взаимодействующих М. (N3 -Н N , N -Ь Н О и т.п.) велось для единой системы, включающей все ядра и электроны этих двух М. одновременно (в силу требований перестановочной симметрии для электронов, подсистем тождеств, ядер и др.), все же методы квантовой теории позволяют во мн. случаях сохранять представления об [c.108]


Смотреть страницы где упоминается термин Ковалентная связь другие методы: [c.165]    [c.98]    [c.80]    [c.234]    [c.106]    [c.184]    [c.294]    [c.221]    [c.221]    [c.54]    [c.251]   
Промежуточные продукты и промежуточные реакции автоокисления углеводородов (1949) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Другие методы

Ковалентность

Связи ковалентные Связи

Связь ковалентная

Связь метод



© 2024 chem21.info Реклама на сайте