Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты репрессия ферментов

    Как видно из рис. 24, регуляция ферментов биосинтеза аминокислот семейства аспарагиновой кислоты идет как путем ингибирования конечными продуктами, так и при действии механизмов репрессии. [c.51]

    Регуляция биосинтеза аминокислот, основанная на изменении концентрации ферментов, — это генный уровень регуляции. Если данная аминокислота присутствует в достаточном количестве, гены, кодирующие ферменты этого пути, репрессируются, когда же ее концентрация снижается, происходит индукция генов и ферменты начинают вырабатываться в большом количестве. Механизм генетической репрессии приведен в главе 29. [c.407]


    ЛИ же концентрация этой аминокислоты понизится и окажется уже недостаточной, клетки начинают вырабатывать больше таких ферментов. Регуляция этого типа осушествляется путем изменений в активности генов, кодирующих соответствующие ферменты. Всякий раз, когда продукт данного биосинтетического пути присутствует в достаточной концентрации, гены, кодирующие ферменты этого пути, инактивируются, или репрессируются. Когда же концентрация продукта данной последовательности реакций снижается, эти гены дерепрессируют-ся и ферменты начинают вырабатываться в большем количестве. Дальше мы познакомимся с тем, как синтез ферментов регулируется при помощи механизмов генетической репрессии (гл. 29). [c.662]

    Чтобы лучше понять современные представления о репрессии и индукции синтеза ферментов, необходимо сначала рассмотреть, как происходит соединение аминокислот в определенной последовательности при образовании молекулы белка. В последние годы этот вопрос многократно описывался в литературе с самых различных точек зрения. Поэтому мы коснемся его очень кратко, а для общего ознакомления рекомендуем читателю книгу Дж. Д. Уотсона Молекулярная биология гена [43]. [c.69]

    Кроме генов, на которые присутствие определенных пизкомолекулярных соединений оказывает дерепрессирующий эффект, известны также гены, у которых определенные продукты обмена вызывают репрессию. Такие гены давно известны у бактерий. К ним относятся, в частности, гены, ответственные за синтез незаменимых метаболитов. Активность подобных генов в синтезе соответствующих информационных РНК контролируется присутствием или отсутствием конечного продукта. Аналогичные гены, репрессируемые метаболитами, обнаружены и у высших растений. Так, например, в клетках растения табака, выращенных на искусственной среде с нитратом в качестве источника азота, образуется фермент нитратредуктаза, который восстанавливает нитрат до аммиака. Те же самые клетки на среде с нитратом и аминокислотами не образуют нитратредуктазу. [c.527]

    Механизмы индукции и репрессии предохраняют клетку от напрасной траты аминокислот и энергии на образование ненужных в данных условиях ферментов, однако, когда появляется необходимость, эти ферменты могут быстро синтезироваться. [c.15]

    Другой важный тип изменения концентрации фермента в бактериальной клетке, противоположный по своему проявлению индукции ферментов,-это репрессия ферментов. Когда клетки Е. oli растут на среде, содержащей в качестве единственного источника азота соль аммония, им приходится синтезировать все азотсодержащие соединения из иона NHI и источника углерода. Такие клетки, очевидно, должны содержать все ферментные системы для синтеза 20 различных аминокислот. Однако если доба- [c.955]


    Bom случае репрессор включает транскрипцию, во втором он ее выключает. Это взаимодействие в свою очередь контролируется аллостерическим взаимодействием с низкомолекулярным соединением, играющим регуляторную роль. Негативный апорепрессор может, например, инактивироваться под действием индуктора или активироваться под действием корепрессора. Следовательно, индукп ия и дерепрессия как формально, так и в смысле механизма, по существу, эквивалентны. Индукция и репрессия ферментов у микроорганизмов — широко распространенные явления. Из шести указанных выше оперонов три, относящиеся к обмену сахаров, индуцируются субстратами ферментов или структурными аналогами этих субстратов (как это и следует ожидать исходя из приведенных выше определений) опероны, контролирующие биосинтез аминокислот, репрессируются самими этими аминокислотами. [c.536]

    Репрессия ферментов может возникнуть в случае, если синтезируемое ими вещество дается клетке уже в готовом виде. Так, например, бактерии кишечной палочки синтезируют фермент фосфатазу, гидролизующий органические соединения, освобождая от них неорганический фосфор, необходиглый клеткам. Но если поместить эти бактерии в среду с достаточным количеством неорганического фосфора, то синтез фосфатазы в них полностью подавляется (репрессируется). Если в среде отсутствует аминокислота триптофан, то через несколько минут начинается синтез ферментов, участвующих в образовании триптофана. Эти факты свидетельствуют о существовании своеобразной регуляции синтеза различных белков в клетке. [c.292]

    Спустя много лет после того, как была открыта положительная ферментативная адаптация, т. е. индукция синтеза фермента в присутствии субстрата (или структурного аналога субстрата), выяснилось, что существует также отрицательная ферментативная адаптация, или репрессия ферментов. В этом случае синтез фермента, вместо того чтобы индуцироваться субстратом, угнетается в присутствии продукта реакции, которую он катализирует. Существование репрессии ферментов было впервые установлено в лаборатории Моно в 1953 г., когда было показано, что синтез трипто-фан-синтазы Е. oli — фермента, определяемого генами irpA и irpB, — подавляется в присутствии триптофана. Биологический смысл этого явления так же очевиден, как в случае индукции р-галактозидазы лактозой для клетки было бы чрезвычайно неэкономно синтезировать ферменты, обеспечивающие последний этап биосинтеза триптофана, в то время когда эта аминокислота в достаточном количестве имеется в окружающей среде. В течение последующих нескольких лет было обнаружено много других случаев репрессии ферментов — в основном ферментов, осуществляющих у бактерий синтез аминокислот и гидролиз фосфорилированных органических соединений. [c.486]

    Были проведены специальные опыты для выяснения вопроса о соотношении между этими регуляторными механизмами. Показано, что если к культуре Е. соИ, растущей на глюкозоминеральной среде, добавить низкие концентрации (от 1 до 10 мкг/мл) аргинина, то репрессии ферментов пути биосинтеза аргинина не происходит, а весь экзогенный аргинин усваивается. Очевидно, что в этих условиях действует механизм ретроингибирования, который компенсирует увеличение концентрации аргинина уменьшением собственного синтеза этой аминокислоты. Однако при добавлении аргинина в концентрации более 10 мкг/мл он используется не полностью и можно наблюдать репрессию ферментов пути биосинтеза аргинина. Ретроингибирование, следовательно, можно рассматривать как способ быстрого и тонкого регулирования биосинтеза малых молекул, тогда как репрессия осуществляет более медленное и грубое регулирование, главным образом с целью экономии синтеза белка. Оба эти механизма при совместном действии дополняют друг друга, обеспечивая максимальную экономию всех клеточных ресурсов. [c.15]

    Относится ли репрессия ферментов к общим для микроорганизмов явлениям Да, ферментативные реакции, приводящие к образованию почти всех аминокислот, пуринов, ниримидинов, рибонук-леотидов, дезоксирибонуклеотидов, некоторых витаминов и многих других соединений, по-видимому, могут быть репрессированы. Это относится главным образом к бактериям, но также и к другим микроорганизмам, а до некоторой степени даже к клеткам высших животных и растений. [c.55]

    На рис. 22-10 показаны три изофермента (они обозначены буквами А, В и С), не имеюпще аллостерических модуляторов. Активность этих изоферментов регулируется путем изменения скорости их синтеза в клетке их называют репрессируемыми ферментами. Синтез изоферментов А и В репрессируется у Е. соН при наличии достаточного количества метионина. Точно так же и синтез изофермента С репрессируется, если в среде в достаточном количестве присутствует изолейцин. Механизм, регулирующий биосинтез аминокислот путем репрессии и дерепрессии (гл. 29), обычно реагирует медленнее, чем механизм аллостерической регуляции. [c.662]


    Образование ферментов, участвующих в процессах анаболизма, например в биосинтезе пиримидинов, пуринов и 20 аминокислот, регулируется путем репрессии. В большинстве случаев сигнал к остановке биосинтеза белков исходит от конечных продуктов этого процесса (репрессия конечным продуктом). Если в среде имеются одновременно два субстрата, то бактерия обычно предпочитает тот субстрат, который обеспечивает более быстрый рост. Синтез ферментов, расще-пляюпщх второй субстрат, репрессируется в этом случае говорят о катаболитной репрессии. [c.474]

    Схемы регуляции при разветвленных путях биосинтеза. Регуляция образования ферментов, участвующих в разветвленных путях биосинтеза, очень сложна. Примерами могут служить системы, синтезирующие семейство ароматических аминокислот , семейство аспарагиновой кислоты и семейство пировиноградной кислоты (см. рис. 7.17). Очевидно, что каждый конечный продукт может репрессировать образование ферментов только специфического пути биосинтеза. Ферменты, находящиеся перед местом разветвления путей, подвержены репрессии всеми конечными продуктами, действующими одновременно (мультива-лентная репрессия). Синтез этих ферментов подавляется лишь тогда, когда в питательной среде присутствуют все конечные продукты если же добавлять их по отдельности, они такого эффекта не оказывают. [c.478]

    С помощью механизма, который Г. Умбаргер и его сотрудники назвали мультивалвнтной репрессией (Multivalent repression) [37]. Выяснилось, что ферменты, общие для всех этих процессов, не подвергаются репрессии до тех пор, пока не будет одновременного избытка всех конечных продуктов — валина, изолейцина и лейцина. Таким образом, ни одна аминокислота в отдельности не может отключить синтез ферментов, необходимых для синтеза остальных. [c.68]

    Репрессия под действием конечных продуктов характерна для процессов биосинтеза (анаболизма) аминокислот, витаминов, пуринов и пиримидинов индукция же, как правило, имеет место при распаде (катаболизме) источников углерода и энергии Совершенно очевидно, что регуляция необходима для обеспечения экономичности работы белоксинтезирующей системы. Синтез ферментов любого метаболического пути включается или выключается в зависимости от того, сколь велика в данный момент потребность клетки в этом пути. Зачем синтезировать белки, если они не нужны Особенно ярким примером того, как с помощью индукции и репрессии обеспечивается строгий контроль над синтезом определенной группы белков, может служить регуляция образования ферментов, катализирующих распад миндальной кислоты (точнее ее солей — манделатов) у Pseudomonas. Ниже приведена предполагаемая последовательность реакций распада. [c.536]

    Конечно, совсем по-иному должно обстоять дело с конститутивными ферментами, разлагающими глюкозу. Эта ферментная система работает очень интенсивно, и концентрация ферментов должна здесь постоянно поддерживаться на очень высоком уровне. Тем не менее она не бывает слишком высокой. Возможности регуляции здесь следующие. Во-первых, индуктор и корепрессор могут быть родственны друг другу, т. е. либо индуктор возникает из корепрессора (или наоборот), либо индуктор и корепрессор образуются одновременно, на одной предшествующей стадии. Во-вторых, между индуктором и корепрессором может устанавливаться постоянное количественное соотношение (нечто подобное известно в органической химии), которое как раз таково, чтобы отдача информации опероном все время держалась на постоянном (высоком) уровне. Однако все это, собственно говоря, домыслы, лишенные экспериментального подтверждения. Возможно, в действительности все выглядит совершенно иначе. Но одно кажется совершенно ясным наше разделение ферментов на регулируемые и нерегулируемые (конститутивные) не вполне правильно. Лучше было бы говорить о ферментах, концентрация которых стабильно поддерживается на каком-то постоянном, весьма низком (нанример, ферменты биосинтеза коферментов) или высоком уровне (например, ферменты разложения глюкозы), и о ферментах, концентрация которых может сильно варьировать, т. е. быть очень высокой или нулевой в зависимости от требований (синтез аминокислот — регуляция посредством репрессии распад лактозы — регуляция посредством индукции). Поскольку нам важно, чтобы читатель хорошо усвоил принцип регуляции, попробуем кратко резюмировать все то, что мы рассказали. Итак, регуляция осуществляется посредством репрессоров, имеющих двойную (аллостерия) специфичность во-нервых, в отношении генов-операторов, находящихся в геноме, и, во-вторых, в отношении определенных малых молекул (корепрес-соров или индукторов), находящихся в цитоплазме. К. Брэш в своей книге Классическая и молекулярная генетика так хорошо описал все эти механизмы, что лучше всего привести здесь его собственные слова  [c.287]

    Другой механизм управления синтезом нужного фермента — это индукция и репрессия (рис. 156). Например, фермент -галакто-зидаза — нндуцибельный фермент у Е. соИ, уровень которого повышается в присутствии небольшой молекулы (аллолактозы), называемой индуктором. Аминокислоты, присутствующие в окружающей среде, могут снижать образование ферментов, ответственных за их биосинтез. Тогда эти ферменты относят к репрессибель-ным, а метаболиты, вызывающие снижение синтеза такого фермента, называют корепрессорами. [c.235]

    Биосинтез определенных аминокислот из более простых соединений в большинстве случаев осушествляется в ходе последовательных ферментативных реакций, и гены, кодирующие синтез соответствующих ферментов, у бактерий обычно сгруппированы в одном опероне. Например, гистидиновый оперон, в котором локализованы гены для ферментов, катализирующих последовательные стадии синтеза гистидина у Salmonella, содержит гены для десяти ферментов, каждый из которых катализирует одну из реакций, ведущих к образованию гистидина. Аналогично, аргининовый оперон Е. соИ содержит гены для восьми ферментов, которые в совокупности катализируют цепь реакций превращения глутамата в аргинин. Репрессия, вызванная аминокислотой, как и следует ожидать, предотвращает образование всех кодируемых данным опероном ферментов. [c.68]

    Такая реакция на изменения в составе питательной среды наблюдается не только при необходимости использовать новые субстраты она используется также для выключения синтезов эндогенных соединений при их внезапном появлении в среде. Например, триптофан, одна из существенных аминокислот, синтезируется при участии фермента триптофан-синтазы. Однако если в среде, на которой выращиваются бактерии, присутствует триптофан, синтез фермента немедленно прекращается. Это явление получило название репрессия. Она позволяет бактериальной клетке избежать перевбда своих ресурсов на ненужную в данный момент синтетическую активность. [c.176]

    Даже если генетические возможности микроорганизма позволяют ему продуцировать определенный фермент, при этом еще не гарантируется его синтез (транскрипция и трансляция). Синтез многих ферментов и ферментных систем зависит от присутствия или отсутствия определенных регуляторных компонентов, или триггеров , образующихся эндогенно или вносимых в культуральную среду. Вещества, стимулирующие транскрипцию, называют индукторами, а сам процесс стимуляции называют индукцией. В тех случаях, когда индукторов нет, говорят о деиндукции. Другие вещества, называемые репрессорами, напротив, предотвращают транскрипцию, а сам процесс предотвращения транскрипции называют репрессией в отсутствие репрессора происходит дерепрессия. Описаны различные типы репрессии у бактерий простая репрессия по типу обратной связи, или репрессия конечным продуктом мультивалентная репрессия, присущая определенным ферментам, участвующим в синтезе аминокислот с разветвленной цепью координированная репрессия, когда все ферменты, участвующие в биосинтезе, согласованно репрессируются в присутствии высоких концентраций продукта реакции (например, триптофана или гистидина). Описанные ниже эксперименты иллюстрируют некоторые типы регуляции синтеза бактериальных ферментов путем индукции и репрессии. [c.414]

    С помощью подобной же серии опытов можно продемонстрировать чувствительность L-треониндегидрата-зы (синтезирующего фермента) к мультивалентной репрессии конечным продуктом реакции (L-изолейцином, I-лейцином, L-валином). Для такой репрессии требуется присутствие всех трех аминокислот (Умбэргер, личное сообщение). [c.417]

    В процессе образования ряда антибиотиков (аминогликозидов, тетрациклинов, полипептидов, бета-лактамов и др.) может наблюдаться ингибирование их биосинтеза глюкозой, присутствующей в среде, в результате катаболитной репрессии одного или нескольких ферментов, участвующих в образовании антибиотика. Некоторые ферменты могут подвергаться катаболитной репрессии под влиянием ионов аммония или некоторых аминокислот. Такие процессы возможны при биосинтезе стрептомицина, рифамицина, эритромицина, клавулановой кислоты и некоторых других антибиотиков. [c.87]

    Микроорганизмы обычно синтезируют каждую из аминокислот в определенных количествах, обеспечивая тем самым синтез специфических белков. Это объясняется тем, что контроль за скоростью биосинтеза каждой аминокислоты осуществляется по принципу обратной связи как на уровне генов, ответственных за синтез соответствующих ферментов (репрессия), так и на уровне самих ферментов, способных под действием избытка образующихся аминокислот изменять свою активность (ретроингибирование). Такой контроль исключает перепроизводство аминокислот, и выделение их из клетки возможно лишь у микроорганизмов с нарушенной системой регуляции. Такие культуры иногда выделяют из природных источников. Так, известны штаммы дикого типа, накапливающие в среде глутаминовую кислоту, пролин или валин. Однако основной путь селекции продуцентов аминокислот — получение ауксотрофных и регуляторных мутантов. Ауксотрофные мутанты отбирают на селективных средах после воздействия на суспензии бактериальных культур физическими (например, ультрафиолетовое или рентгеновское излучение) и химическими (этиленимин, диэтилсульфат, нитрозоэтил-мочевина и т. д.) факторами. У таких мутантов появляется дефектный ген, детерминирующий фермент, без которого не может осуществляться биосинтез определенной аминокислоты. Получение ауксотрофных мутантов — продуцентов аминокислот — возможно только для микроорганизмов, имеющих разветвленный путь биосинтеза, по крайней мере, двух аминокислот, образующихся из одного предшественника. Их биосинтез контролируется на уровне первого фермента общего участка согласованным ингибированием конечными продуктами (ретроингибирование). У таких ауксотрофных мутантов избыток одной аминокислоты при дефиците другой не приводит к подавлению активности первого фермента. Аминокислота, биосинтез которой блокирован в результате мутагенного воздействия, должна добавляться в ограниченном количестве. [c.20]

    У эукариотических микроорганизмов также существует общая система регуляции азотного метаболизма. Хотя аммиак, а также глутамат и глутамин являются для грибов и дрожжей предпочтительными источниками азота, они могут использовать для этой цели белки, различные аминокислоты, пурины, ацетамид, нитраты и нитриты. Ферменты, необходимые для усвоения указанных соединений, обычно индуцибельны и подвержены азотной репрессии. Показано, что различные азотсодержащие субстраты вызывают репрессию не сами по себе, а только после превращения их в глутамин. Вероятно, что соотношение глутамин/а-кетоглутарат служит и здесь сигналом обеспеченности клетки азотом. Обнаружено, что глутаминсинтетазная активность у Neurospora [c.44]


Смотреть страницы где упоминается термин Аминокислоты репрессия ферментов: [c.401]    [c.955]    [c.65]    [c.238]    [c.177]    [c.487]    [c.118]    [c.101]    [c.160]    [c.36]    [c.151]    [c.477]    [c.480]    [c.491]    [c.65]    [c.73]    [c.487]    [c.67]    [c.68]    [c.69]    [c.151]    [c.43]    [c.79]    [c.346]    [c.25]   
Молекулярная генетика (1974) -- [ c.486 , c.487 ]




ПОИСК





Смотрите так же термины и статьи:

Репрессия синтеза ферментов аминокислотами

Фермент репрессия

Ферменты аминокислоты



© 2025 chem21.info Реклама на сайте