Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фермент репрессия

    На основании имеющихся данных можно различать два механизма регуляции действия ферментов по принципу обратной связи а) угнетение синтеза ферментов (репрессия) и б) угнетение ферментативной активности концентрацией конечного продукта. [c.238]

    Репрессия ферментов. Репрессия ферментов продуктами их действия встречается прежде всего в процессах анаболизма репрессирующий метаболит (корепрессор) в первую очередь подавляет активность ферментов, катализирующих его синтез. Например, аргинин репрессирует все восемь ферментов, участвующих в его синтезе. Синтез гистидина подчиняется двойственному ретроингибированию  [c.387]


    Роль важного регуляторного агента в бактериальных клетках играет циклический АМР (сАМР, гл. 7, разд, Д, 8). Примером процесса, опосредованного участием сАМР, может служить катаболитная репрессия. Сущность этого процесса состоит в ингибировании (катаболитом) транскрипции генов, детерминирующих синтез ферментов, необходимых для катаболизма лактозы или других энергетических субстратов, когда в среде присутствует глюкоза — более эффективный источник энергии. Механизм этого процесса не известен, однако установлено, что в присутствии глюкозы концентрация сАМР снижается. [c.204]

    Следовательно, сущность катаболитной репрессии заключается в подавлении биосинтеза ферментов, обеспечивающих метаболизм одного источника углерода другим источником углерода. [c.38]

    Несмотря, однако, на эту сложность, существование некоторых регуляторных механизмов было четко доказано. Выше уже были рассмотрены два типа регуляции, в основе которых лежит принцип обратной связи. Один из них используется при синтезе ферментов и состоит в репрессии этого синтеза избытком фермента (гл. 6, разд. Е,2), а другой обеспечивает быстрый контроль активности фермента путем его ингибирования (гл. 6, разд. Е, 4). Когда имеет место постоянная скорость роста клеток, регуляция по типу обратной связи может оказаться достаточной для того, чтобы обеспечить гармоничное и пропорциональное увеличение концентрации всех составных частей. Такая ситуация наблюдается, например, на логарифмической стадии роста бактерий (гл. 6, разд. В) или в случае быстро растущих эмбрионов животных, когда все необходимые для них питательные вещества поступают из относительно неизменной материнской крови. [c.503]

    Генетическая регуляция - индукция или репрессия ферментов. [c.35]

    Изучение регуляции и контроля ферментов — молодая и быстро развивающаяся область биохимии, уже установившая, однако, ряд весьма сложных механизмов. Представляется возможным различить механизмы, общие для всех ферментов, такие как субстратная специфичность, оптимум pH и т. д. механизмы, общие для всех организмов, включающие ингибирование и репрессию по принципу обратной связи и механизмы, характерные для высших организмов, где существуют другие виды регуляции активности ферментов, например посредством действия гормонов. Приведя только один, уже известный нам пример, можно отметить, что вся сложная система описанных выше реакций, кульминацией которой является высвобождение глюкозы из гликогена, может приводиться в действие несколькими молекулами адреналина [148]. [c.538]


    Изменение количества синтезируемых ферментов в клетке идет в результате действия механизмов индукции и репрессии. Индукцией называют процесс увеличения количества соответствующего фермента в клетке под влиянием субстрата. Последний индуцирует образование главным образом ферментов обмена веществ в процессах энергетического катаболизма. Если в состав ДНК входит несколько генОв, определяющих синтез относящихся к разным субстратам ферментов, то в конкретных условиях среды, содержащей определенные субстраты, целесообразно синтезировать только те ферменты, для действия которых в среде имеется субстрат. [c.46]

    Образование анаболических ферментов (процесс биосинтеза) регулируется главным образом механизмом репрессии. Репрессией называют процесс уменьшения скорости биосинтеза какого-либо фермента или группы ферментов, катализирующих цепную реакцию определенного процесса при помощи специальных веществ — репрессоров. Им может быть конечный продукт [c.48]

    Как видно из рис. 24, регуляция ферментов биосинтеза аминокислот семейства аспарагиновой кислоты идет как путем ингибирования конечными продуктами, так и при действии механизмов репрессии. [c.51]

    В клетках прокариот и эукариот имеются ферменты, концентрация которых не требует добавления индуктора это так называемые конститутивные ферменты. Количество фермента в клетке зависит от наличия продукта реакции, катализируемой данным ферментом, причем продукт реакции вызывает торможение синтеза фермента в результате репрессии (см. далее). [c.153]

    Как было указано, концентрация ряда ферментов в клетках резко снижается при повышении содержания отдаленных конечных продуктов, образующихся в цепи последовательных ферментативных реакций. Такой эффект, получивший название репрессии ферментов, часто наблюдается при реакциях биосинтеза. В этих случаях молекулы репрессора, также образующиеся в рибосомах ядра по команде гена-регулятора, являются неактивными и сами по себе не обладают способностью подавлять деятельность гена-оператора и, следовательно, всего оперона, но приобретают такую способность после образования комплекса с конечным или одним из конечных продуктов биосинтетического процесса (см. рис. 14.13). [c.537]

    Катаболитная репрессия — это явление подавления синтеза ферментов в присутствии катаболитов глюкозы, глицерина и т.п. [c.100]

    Кроме этого в бактериальных клетках имеются ферменты, количества которых могут резко меняться в зависимости от состава питательных веществ среды. Это происходит в результате того, что гены, детерминирующие эти ферменты, включаются или выключаются по мере надобности. Их называют индуцибельны-м и. При отсутствии в среде субстратов этих ферментов последние содержатся в клетке в следовых количествах. Если в среду добавить вещество, служащее субстратом определенного фермента, происходит быстрый синтез этого фермента в клетке, т.е. имеет место индукция синтеза фермента. Если же в питательной среде в готовом виде содержится вещество, являющееся конечным продуктом какого-либо биосинтетического пути, происходит быстрое прекращение синтеза ферментов этого пути. Это явление получило название репрессии конечным продуктом. Ферменты, синтез которых подавляется конечным продуктом, могут быть дерепрессированы, т. е. скорость их синтеза превысит обычную, если концентрация конечного продукта упадет до очень низкого уровня. Дерепрессия этих ферментов аналогична явлению индукции. [c.118]

    Репрессия конечным продуктом. Все биосинтетические пути находятся под контролем механизма репрессии конечным продуктом. Точно так же образование больщинства анаболических ферментов регулируется путем репрессии их синтеза. Репрессия осуществляется особыми присутствующими в клетке веществами — репрессорами. Факторами, модифицирующими активность ре- [c.118]

    Репрессия может быть координированной, т.е. синтез каждого фермента данного пути в одинаковой степени подавляется конечным продуктом. Часто синтез ферментов одного пути репрессируется в разной степени. В разветвленных биосинтетических путях механизмы репрессии могут быть модифицированы (как и механизмы ингибирования), чтобы лучше обеспечить регуляцию нескольких конечных продуктов из общего исходного субстрата. Синтез многих ферментов в таких путях репрессируется только при совместном действии всех конечных продуктов. Если реакция на общем участке разветвленного пути катализируется изоферментами, синтез каждого из них находится под контролем своего конечного продукта (см. рис. 31). [c.119]

    Биосинтетические пути регулируются преимущественно по механизму аллостерического ингибирования первого фермента и репрессии синтеза ферментов этого пути конечным продуктом. Регулирование разветвленных биосинтетических путей осуществляется с помощью усложненных вариантов этих же механизмов. [c.123]


    Различают экстенсивную и интенсивную регуляцию активности ферментов в клетках и тканях организма. Экстенсивная регуляция обусловлена индукцией или репрессией генов, кодирующих синтез соответствующих ферментов. Увеличение или уменьшение числа активных молекул определяет суммарную активность пула данного фермента в каком-либо компартменте клетки, в ткани или целом органе. В физиологических условиях содержание того или иного фермента в клетке постоянно и регулируется двумя процессами скоростью его синтеза и распада. Оба эти процесса взаимосвязаны и контролируются на генном уровне. Увеличение скорости синтеза ферментативного белка обусловливает активацию внутриклеточных протеиназ и ускоренный распад старых молекул фермента, а снижение скорости синтеза приводит к замедлению распада ферментативного белка. [c.80]

    Регуляция биосинтеза аминокислот, основанная на изменении концентрации ферментов, — это генный уровень регуляции. Если данная аминокислота присутствует в достаточном количестве, гены, кодирующие ферменты этого пути, репрессируются, когда же ее концентрация снижается, происходит индукция генов и ферменты начинают вырабатываться в большом количестве. Механизм генетической репрессии приведен в главе 29. [c.407]

    Регуляция может осуществляться на многих уровнях, но главную роль играют регуляторные механизмы двух типов. Один из них основан на том, что состав окружающей среды влияет на скорость и интенсивность синтеза различных ферментов. Этот механизм, относительно медленно действующий, регулирующий обмен путем индукции и репрессии, описан в гл. 29. Следует обратить внимание, что скорости синтеза и распада регуляторных ферментов чаще всего регулируются гормонами. [c.447]

    Как и и в случае ферментов, по типу индукции и катаболитной репрессии регулируется биосинтез компонентов тех транспортных систем, субстраты которых участвуют в процессах катаболизма (главным образом сахаров и органических кислот). По типу репрессии избытком субстрата регулируется главным образом биосинтез аминокислотных транспортных систем. [c.67]

    Гем - другой конечный продукт биосинтеза тетрапирролов - осуществляет репрессию ферментов, осуществляющих синтез 5-амино-левулиновой кислоты, порфобилиногена и уропорфириногена П1, т.е. промежуточных продуктов синтеза порфиринов и корриноидов. Иными словами, в присутствии гема снижается образование как витамина В 2 так и порфиринов. [c.289]

    Основные научные работы посвящены изучению ростовых факторов микробов, физиологии вирусов, индукции и репрессии ферментов. Начал исследовать ростовые факторы в 1932, находясь в командировке в Гейдельбергском ун-те. Доказал (1936), что фактор V — кофермент, и установил его физиологическую роль для бактерий. Совместно с А. Гутман доказал [c.314]

    Микроорганизмы обычно синтезируют каждую из аминокислот в определенных количествах, обеспечивая тем самым синтез специфических белков. Это объясняется тем, что контроль за скоростью биосинтеза каждой аминокислоты осуществляется по принципу обратной связи как на уровне генов, ответственных за синтез соответствующих ферментов (репрессия), так и на уровне самих ферментов, способных под действием избытка образующихся аминокислот изменять свою активность (ретроингибирование). Такой контроль исключает перепроизводство аминокислот, и выделение их из клетки возможно лишь у микроорганизмов с нарушенной системой регуляции. Такие культуры иногда выделяют из природных источников. Так, известны штаммы дикого типа, накапливающие в среде глутаминовую кислоту, пролин или валин. Однако основной путь селекции продуцентов аминокислот — получение ауксотрофных и регуляторных мутантов. Ауксотрофные мутанты отбирают на селективных средах после воздействия на суспензии бактериальных культур физическими (например, ультрафиолетовое или рентгеновское излучение) и химическими (этиленимин, диэтилсульфат, нитрозоэтил-мочевина и т. д.) факторами. У таких мутантов появляется дефектный ген, детерминирующий фермент, без которого не может осуществляться биосинтез определенной аминокислоты. Получение ауксотрофных мутантов — продуцентов аминокислот — возможно только для микроорганизмов, имеющих разветвленный путь биосинтеза, по крайней мере, двух аминокислот, образующихся из одного предшественника. Их биосинтез контролируется на уровне первого фермента общего участка согласованным ингибированием конечными продуктами (ретроингибирование). У таких ауксотрофных мутантов избыток одной аминокислоты при дефиците другой не приводит к подавлению активности первого фермента. Аминокислота, биосинтез которой блокирован в результате мутагенного воздействия, должна добавляться в ограниченном количестве. [c.20]

    Под контролем стеройдных гормонов находится также синтез белковых ингибиторов и активаторов, а также регуляторных субъединиц ряда ферментов. Репрессия синтеза белкового ингибитора может приводить к повышению, а индукция синтеза — к снижению активности фермента, регулируемого этим белком. [c.212]

    Каждое из множества разнообразных веществ создается в клетке в строго необходимых для роста пропорциях в результате фер-ментативньк реакций. Координация химических превращений, обеспечивающая экономность метаболизма, осуществляется у микроорганизмов тремя основными механизмами регуляцией активности ферментов, в том числе путем ретроингибирования регуляцией объема синтеза ферментов (индукция и репрессия биосинтеза ферментов) катаболитной репрессией. [c.34]

    РИС. 6-15. Некоторые механизмы контроля метаболических реакций. На всех приведенных в книге рисунках модуляция активности фермента аллостерическими эффекторами, а также модуляция активности генов (транскрипция и трансляция) обозначается пунктирными линиями, отходящими от соответствующего метаболита. Линии заканчиваются знаком минус в случае ингибирования идерепрессиии знаком плюс в случае активации и депрессии. Кружки соответствуют прямому действию иа ферменты, а квадратики — репрессии или индукции синтеза ферментов. (Подобная схема представлена в работе [66а].) [c.64]

    Заверщение трансляции С-цистрона первыми рибосомами приводит к тому, что в системе появляются свободные молекулы белка оболочки. По мере трансляции этот белок накапливается и в будущем будет вовлечен в самосборку готовых вирусных частиц. Однако он оказался обладающим также и другой функцией он имеет сильное специфическое сродство к определенному участку MS2 РНК между С- и S-цистронами, включающему инициирующий кодон S-цистрона. Соответственно, он присоединяется к этому участку и репрессирует инициацию трансляции S-цистрона. Вероятно, репрессия происходит вследствие стабилизации лабильной вторичной структуры, показанной на рис. 11, белком оболочки фага и получающейся отсюда недоступности инициирующего кодона S-цистрона. Следовательно, через сравнительно короткое время после того, как трансляция S-цистрона была разрешена трансляцией предшествующего цистрона, происходит репрессия инициации трансляции S-цистрона вследствие накопления белкового продукта трансляции предшествующего цистрона. В этих условиях рибосомы, уже начавшие трансляцию, продолжают ее и в конце концов заканчивают синтез соответствующего количества молекул субъединиц синтетазы. Ограниченного количества этого белка достаточно, чтобы образовать активные молекулы РНК-репликазы, которые начнут репликацию MS2 РНК. В то же время репрессия дальнейшего синтеза этого белка позволяет избежать ненужной суперпродукции фермента. Белок оболочки фага, являющийся репрессором S-цистрона, [c.235]

    Биосинтез белков является объектом генетического контроля. В бактериях, во всяком случае, он проявляется на уровне синтеза информационной РНК посредством взаимодействия особого ( регуляторного ) белка со специфическим участком ДНК (см. часть 22 и разд. 24.2.3). В тканях животных на механизмы, контролирующие уровень ферментов, влияют также ингибиторы синтеза РНК [149]. Детали этих механизмов контроля не важны в контексте данного раздела. Важным моментом является факт, что существуют механизмы регуляции концентрации ферментов на определенном метаболитическом пути посредством конечного продукта этого пути. Так, в бактериальных системах хорошо изучены индуцируемые ферменты. Пока субстраты этих ферментов присутствуют в среде, биосинтеза ферментов не происходит. Часто синтез нескольких ферментов какого-либо одного метаболи-тического пути индуцируется присутствием субстрата первого фермента этого пути. Индукция субстратом, таким образом, представляет собой механизм повышения концентрации системы ферментов по мере появления рабочей необходимости . Соответствующий механизм, понижающий избыточную концентрацию фермента, если последний или система ферментов производит слишком большие количества определенного метаболита, получил название репрессии по принципу обратной связи. Классическим примером этого механизма является ингибирование биосинтеза гистидина в Salmonella typhimurium высокими концентрациями гистидина. Концентрации всех десяти ферментов биосинтетической цепи в ответ на изменение концентрации гистидина изменяются совершенно одинаково [150]. [c.535]

    Регуляторный механизм репрессии конечным продуктом показан на рис. 22. Из него видно, что ген-регулятор образует апорепрессор, превращающийся в репрессор только после связи с конечным продуктом реакций — корепрессором. Только в таком связанном виде репрессор блокирует ген-оператор и прекращает синтез фермента. [c.48]

    В регуляции катаболизма репрессорами могут быть исходные или промежуточные продукты. При помощи этого механизма регуляции бактерии Е. соИ из двух источников углерода — глюкозы и сорбозы вначале используют легко катаболизируе-мую глюкозу. Этот углевод в данном случае является репрессором ферментов катаболизма сорбозы. После использования глюкозы репрессия заканчивается и новый субстрат — сорбоза индуцирует синтез новых ферментов. Явление, когда культура микроорганизмов использует несколько различных субстратов среды не одновременно, а постепенно один за другим, называют диауксией. [c.48]

    Хлебопекарные дрожжи обладают и бродильной активностью, но чтобы достигнуть использования сахаров только для образования биомассы, спиртовое брожение надо ограничить всеми доступными средствами. Это достигается интенсивной аэрацией среды, а также поддержанием низкой концентрации сахара в ней (0,5—1,5%). При высокой концентрации сахаров имеет место катаболигная репрессия ферментов цикла Кребса и переключение энергетического метаболизма преимущественно на брожение. Чтобы избежать этого, сахар в среду подают непрерывно с постоянной или возрастающей скоростью притока. [c.103]

    Общую теорию регуляции синтеза белка разработали французские ученые, лауреаты Нобелевской премии Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к выключению или включению генов как функционирующих единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию на синтез специфических белков. Эта теория, доказанная в опытах на бактериях, получила широкое признание, хотя в эукариотических клетках механизмы регуляции синтеза белка, вероятнее всего, являются более сложными (см. далее). У бактерий доказана индукция ферментов (синтез ферментов de novo) при добавлении в питательную среду субстратов этих ферментов. Добавление конечных продуктов реакции, образование которых катализируется этими же ферментами, напротив, вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления—индукция и репрессия—взаимосвязаны. [c.535]

    Механизм репрессии конечным продуктом на уровне транскрипции стал проясняться с 50-х гг. XX в. Большой вклад в это внесли работы Ф. Жакоба и Ж. Моно. Было показано, что наряду со структурными генами, кодирующими синтез ферментов, в бактериальном геноме существуют специальные регуляторные гены. Один из них — ген-регулятор (ген К), функция которого заключается в регуляции процесса транскрипции структурного гена (или генов). Ген-регулятор кодирует синтез специфического аллосте-рического белка-репрессора, имеющего два центра связывания один узнает определенную последовательность нуклеотидов на участке ДНК, называемом оператором (ген О), другой — взаимодействует с эффектором. Ген-оператор расположен рядом со структурным геном (генами) и служит местом связывания репрессора. В отличие от операторных генов гены-регуляторы расположены на некотором расстоянии от структурных генов (продукты регуляторных генов — репрессоры являются свободно диффундирующими белковыми молекулами). [c.119]

    Катаболитная репрессия. Кроме репрессии конечным продуктом, характерной для анаболических путей, описан тип репрессии, называемой катаболитной и заключающейся в том, что быстро используемые клеткой источники энергии способны подавлять синтез ферментов других путей катаболизма, участвующих в метаболизировании сравнительно медленно используемых источников энергии. Катаболитную репрессию можно рассматривать как приспособление клетки к использованию в первую очередь наиболее легко доступных источников энергии. В присутствии такого источника энергии потребление других субстратов, менее удобных для клетки, временно приостанавливается, и пути ката-болизирования этих субстратов временно выключаются. [c.122]

    Основные механизмы, регулирующие катаболические пути, — индукция синтеза ферментов и катаболитная репрессия. Катаболические пути, в которых функционируют конститутивные ферменты, регулируются большей частью посредством аллостерических воздействий на активность ферментов. Одна из задач катаболических путей — обеспечение клетки энергией. У большинства прокариот возможности генерации энергии намного превышают потребности в ней клетки. Количество АТФ, которое можно синтезировать с помощью имеющихся в клетках аэробных прокариот ферментов гликолитического и дыхательного путей, значительно больше количества АТФ, необходимого для процессов биосинтеза и поддержания жизнедеятельности. Поэтому клетки должны обладать способностью контролировать потребление энергодающих субстратов и, следовательно, выработку клеточной энергии. Основной принцип контроля прост АТФ синтезируется только тогда, когда он необходим. Иными словами, интенсивность энергетических процессов у прокариот регулируется внутриклеточным содержанием АТФ. [c.123]

    В отличие от РееёЬаск-ингибиции Реес1Ьаск-репрессия заключается в том, что производное (дериват) конечного продукта (ре-прессор) подавляет образование ферментов (а не влияет на их активность) в данном метаболическом пути [c.77]

    Эта реакция является ключевой для катаболитной репрессии - ингибирования (катаболитом) транскрипции генов, детерминирующих синтез ферментов, необходимых для катаболизма лактозы или других энергетических субстратов, когда в среде присутствует глюкоза - более эффективный источник энергии. Эта реакция широко распространена у факультативных и облигатных анаэробов, у которых единственный источник энергии - гликолизный путь. [c.54]

    Регуляция биосинтеза витамина В12 осуществляется путем репрессии различных ферментов промежуточными продуктами биосинтеза и самим витамином В12. Следует отметить, что конечный продукт биосинтеза (витамин В12) угнетает только свой собственный синтез и не влияет на образование других тетрапирролов, и предполагают, что действует на стадии метилирования УПГ 1П. В качестве самого действенного регулятора выступает лип1ь полная нуклеотидсодержащая молекула витамина В д (Л.И. Воробьева). [c.289]

    Пунктирными линиями обозначены пути регуляции активности ферментов аллосте-рическими эффекторами, а также активности генов (транскрипция и трансляция). Знак минус указан в случае ингибирования и репрессии. Знак плюс - в случае активации и репрессии. Кружки соответствую прямому действию на ферменты, квадратики - репрессии или индукции синтеза ферментов. [c.461]

    Роль Б. в процессах жизнедеятельности многообразна они выполняют ф-ции ферментов, гормонов Б,-репрессо-ры, 1шгибиторы и модификаторы специфичности регулируют биосинтез Б. и их активность, Б. составляют также основу биомембран, образуют скелет клетки, опорные ткани и защитные покровы организмов, обеспечивают движение. Известны Б., транспортирующие в-ва в организме (напр., альбумин сывороточный), избирательно взаимодействующие с др. структурами иммуноглобулины, лектины). К Б. относятся также нек-рые токсины, [c.68]


Смотреть страницы где упоминается термин Фермент репрессия: [c.955]    [c.68]    [c.106]    [c.160]    [c.36]    [c.37]    [c.573]    [c.106]    [c.472]   
Молекулярная генетика (1974) -- [ c.486 , c.487 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты репрессия ферментов

Индукция и репрессия синтеза ферментов

Катаболитная репрессия Ферменты

Механизм индукции—репрессии ферментов

Репрессия синтез ферментов

Репрессия синтеза ферментов аминокислотами

Репрессия синтеза ферментов продуктом

Репрессия ферментов у бактерий

У прокариот существует также репрессия ферментов

Ферментов активность репрессия

Ферменты, адаптация индукция и репрессия

Ферменты, адаптация репрессия



© 2025 chem21.info Реклама на сайте