Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крахмал метаболизм

    Крахмал первоначально подвергается воздействию находящегося в слюне фермента, птиалина, но в основном гидролиз крахмала происходит в тонком кишечнике, где под действием ферментов поджелудочной железы и других высокоактивных ферментов крахмал превращается в глюкозу. Часть простых сахаров, к числу которых относится глюкоза, переносится кровью в печень, где происходит их отложение в составе гликогена. Другая часть сахаров поступает непосредственно в общий кровоток, где они сгорают с выделением энергии, превращаются в жиры либо накапливаются в мышцах в виде гликогена. Гликоген может высвобождаться при первой же необходимости и служит источником энергии. Метаболизм углеводов регулируется таким гормоном, как инсулин. Механизмы превращения углеводов в СО2 и Н2О очень сложны и не будут рассматриваться в данной книге. [c.486]


    Основные научные работы — в области биохимии углеводов. При изучении метаболизма жиров впервые получил бесклеточный препарат, способный окислять жирные кислоты in vitro. Изучал механизм артериальной гипертонии почечного происхождения. Доказал существование гуморального фактора, повышающего кровяное давление. Открыл (1951) первый сахарный нуклеотид — уридинди-фосфатглюкозу. Изучил его функции в превращениях сахаров в биосинтезе углеводов. Доказал, что для превращения галактозы в глюкозу необходима предварительная чпи-меризация у четвертого углеродного атома выделил особый фермент, вызывающий это превращение. Открыл (1950-е — 1960-е) несколько десятков других нуклео-тиддифосфатсахаров (НДФ-саха-ров), относящихся к пуриновым и пиримидиновым производным. Нашел основной тип ферментативных реакций, ведущих к образованию НДФ-сахаров. Благодаря этим открытиям объяснил механизм биосинтеза многих углеводов, в частности гликогена (1959) и крахмала (1960). [c.292]

    Примерно 1,5—2 10 лет назад парциальное давление Оа в атмосфере достигло 0,02—0,207о современного уровня. При этом начал возникать аэробный метаболизм, дыхание. При клеточном дыхании происходит ряд взаимосвязанных процессов синтеза биологических молекул, необходимых для жизни, и зарядка АТФ (окислительное фосфорилирование). Молекулы пищевых веществ сгорают , окисляются до СОг и НаО, причем Оа служит конечным акцептором водорода. Освобождение химической энергии из пищи происходит, грубо говоря, в трех фазах. Первая состоит в расщеплении макромолекул и молекул жиров. Из белков получаются аминокислоты, из углеводов (крахмал, гликоген)—гексо-зы, из жиров — глицерин и жирные кислоты. Из этих веществ [c.53]

    Прежде чем приступить к изучению метаболизма клеток, следует рассмотреть углеводы, поскольку их можно считать основой существования большинства организмов. В таких углеводах, как сахара и крахмал, заключено основное количество калорий, получаемых с пищей человеком, почти всеми животными и многими бактериями. Центральное место углеводы занимают и в метаболизме зеленых растений и других фотосинтезирующих организмов, утилизирующих солнечную энергию для синтеза углеводов из СО2 и Н2О. Образующиеся в результате фотосинтеза огромные количества крахмала и других углеводов играют роль главных источников энергии и углерода для неспособных к фотосинтезу клеток животных, растений и микроорганизмов. [c.302]

    Метаболизм трех главных компонентов пищи— углеводов, жиров и белков—начинается с расщепления этих веществ на их составные части. Углеводы, например крахмал, расщепляются на простые сахара, такие, как глюкоза жиры в результате гидролиза превращаются в глицерин и жирные кислоты, а белки расщепляются на аминокислоты. Только те пищевые вещества, которые способны расщепляться на небольщие молекулы, всасываются затем из кищечника в кровь. [c.486]


    Особенностями конструктивного метаболизма гомоферментативных молочнокислых бактерий являются слабо развитые биосинтетические способности, что выражается в большой зависимости их роста от наличия в питательной среде готовых органических веществ (аминокислоты, витамины группы В, пурины, пиримидины). В качестве источника углерода молочнокислые бактерии используют лактозу (молочный сахар) или мальтозу (растительный сахар, образующийся при гидролизе крахмала). Могут они также использовать некоторые пентозы, сахароспирты и органические кислоты. Из всех известных непатогенных прокариот молочнокислые бактерии отличаются наибольшей требовательностью к субстрату. Зависимость этих бактерий от наличия готовых органических веществ среды указывает на примитивность в целом их конструктивного метаболизма. [c.217]

    Краткие сведения о ряде ферментов, участвующих в метаболизме полисахаридов крахмала-гликогена, представлены в табл. 14. [c.196]

    Запасные полисахариды присутствуют в растениях в коллоидном состоянии или в водонерастворимой форме, благодаря чему они могут накапливаться в растительных клетках в большом количестве, не влияя на осмотическое давление. Крахмал — наиболее важный и накапливающийся в наибольшем количестве запасный полисахарид в мире растений. У всех растений — от низших водорослей до некоторых высших растений, главным образом двудольных,— углеводы, образовавшиеся в процессе фотосинтеза в хлоропластах, немедленно превращаются в крахмал (фото 46). Такой крахмал называют ассимиляционным. Согласно Смиту [160], у подсолнечника в крахмал превращается почти весь ассимилированный углерод. Однако ассимиляционный крахмал представляет собой довольно лабильную, переходную форму он либо довольно быстро используется в процессах метаболизма, либо превращается в ряде органов, например в семенах, плодах, стеблях, листовых влагалищах и корнях, в запасный крахмал. Эти общие метаболические особенности присущи так называемому крахмалистому листу. Напротив, в сахаристом листе злаков (однодольные растения) крахмал почти не обнаруживается. Сахара здесь представлены главным образом сахарозой и различными моносахаридами они транспортируются в другие части растения и превращаются в запасный крахмал в специальных органах. Например, энергичный синтез крахмала обычно имеет место в листовых влагалищах и в семенах злаков, начиная от периода цветения и кончая периодом созревания зерна. В ряде работ показано, что образование крахмала в зерне ячменя, риса и ржи в стадии налива специфически связано с ассимиляционной активностью верхних листьев и колоса, но не с ассимиляционной активностью расположенных ниже листьев [8, 144]. [c.140]

    Если в дневные часы синтез крахмала наиболее интенсивен при 40° С, то ночью, когда происходит основное отложение крахмала, оптимальная точка этого процесса спускается до 10° С. Тёплые летние ночи южной части Советского Союза неблагоприятны для метаболизма клубней, в результате чего растения, выращенные из [c.316]

    Ферменты, участвующие в метаболизме полисахаридов крахмала-гликогена [c.257]

    В связи с изучением метаболизма азота в зародышах.амфибий (было использовано еще одно видоизменение метода Кьельдаля [6]. Аммиак отгоняют в титрованный раствор бииодата калия и после добавления иодистого калия титруют смесь раствором тиосульфата. В присутствии крахмала наблюдается резкий конец титрования. [c.20]

    Крахмал состоит из нескольких компонентов, различающихся по молекулярной массе и молекулярному строению. В нем присутствуют линейные амилозы А, В, V и разветвленный а м и -лопектин. В амилозах звенья глюкозы соединены гликозидными связями а-( - 4) в амилопектине дополнительно существуют связи а-(1 6). Связи а-гликозидные легко расщепляются, что имеет важное значение для процессов метаболизма. Вследствие существования а-связи пиранозные циклы располагаются под углом примерно 120° друг к другу, что приводит к спиральному строению молекулы крахмала с шестью звеньями глюкозы в каждом витке. Поэтому крахмал существует только в виде гранул, а не фибрилл. Тем не менее различные амилозы способны кристаллизоваться [991. [c.98]

    Химические реакции, протекающие в живом организме, называются процессом обмена веществ или метаболизмом (от греческого слова metabole , означающего изменение). Это реакции самых различных видов. Рассмотрим, что происходит с пищей, потребляемой человеком. Пища может содержать сложные углеводы, в частности крахмал, которые расщепляются в процессе пищеварения на простые сахара и затем проникают через стенки желудочно-кишечного тракта и попадают в ток крови. Затем эти простые сахара в печени превращаются в гликоген (животный крахмал), имеющий ту же формулу, что и крахмал (СеНюОб) ., где х — большое число. Гликоген и другие полисахариды являются одним из важных источников энергии животных. [c.490]


    Механизм действия специфических гидролитических ферментов, принимающих участие в метаболизме крахмала, и строение крахмала взаимозависимы, поэтому их лучше всего рассматривать вместе. По, поскольку этот вопрос будет подробно рассматриваться ниже, здесь мы лишь отметим следующее Мейер и др. [119] предложили линейное строение для амилозы и разветвленное для амилопектина, основываясь на том факте, что при действии Р-амилазы на амилозу происходит полное осахари-вание последней, тогда как из амилопектина образуется остаточный декстрин. Группа Мейера впервые иредлоя ила специфичный метод разделения амилозы и амилопектина, основанный на том, что амилоза в отличие от амилопектина растворима в горячей воде (70—80°). Позднее Шох [156] нашел, что амилоза избирательно осаждается к-бутанолом, с которым она образует кристаллический комплекс он использовал это свойство для фракционирования и очистки кукурузного и картофельного крахмала. Позднее было обнаружено, что еще более эффективным осадителем по сравнению с / -бутанолом являются к-амиловый спирт, к-пропиловый спирт и тимол. [c.141]

    Растительные клетки содержат также пластиды других типов. В бесцветных лейкопластах запасаются крахмал и масла. Значительное место во многих растительных клетках занимают окруженные одиночной мембраной крупные пузьфь-ш-вакуоли (см. рис. 2-21). Они заполнены клеточным соком и различными продуктами, являющимися отходами метаболизма. Эти продукты часто агрегируют с образованием кристаллических отложений. В молодых клетках вакуоли имеют небольшую величину, но по мере старения клеток их размеры увеличиваются, и часто они заполняют весь объем клетки. Вакуоли встречаются также и в некоторых животных клетках, но здесь они, как правило, значительно мельче. У растительных клеток нет ни ресничек, ни жгутиков. [c.47]

    Цикл начинается с того, что под действием АТФ, образовавшегося в фотохимических реакциях, рибулозо-5-фосфат превращается в дифосфат. Последний соединяется с диоксидом углерода с образованием неустойчивого шестиуглеродного соединения, которое дает две молекулы глицериновой кислоты-З-фос-фата. Для ее восстановления в глицеральдегид-З-фосфат и изомерный ему диоксиацетонфосфат необходимы тйкже АТФ и НАДФН. Два последних триуглеродных соединения превращаются во фруктозо-6-фосфат, который далее претерпевает обычный метаболизм углеводов (гл. 15). Кроме этого, углеводы могут запасаться в виде сахарозы или крахмала. [c.290]

    Как было показано ранее, фосфоглицериновая кислота восстанавливается до фосфоглицеральдегида под действием АТФ и восстановленного никотинамида. Образовавшийся глицеральдегид может продолжать поддерживать процесс анаэробного метаболизма, идущего через образование фруктозы и глюкозы и заканчивающегося образованием запаса пищи в виде крахмала или в виде целлюлозы, откладывающейся в стенке клетки как крахмал, так и целлюлоза являются полисахаридами. [c.41]

    Максимальная мощность — наибольшая скорость освобождения энергии, используемой для ресинтеза АТФ, в том или ином процессе (наибольшее количество АТФ, ре-синтезируемое в единицу времени). Мальтоза (С,2Н22О,,) — дисахарид, при гидролизе которого образуются две молекулы глюкозы. В организме образуется при гидролизе крахмала в системе пищеварения. Медиаторы — вещества, образующиеся в клетках под воздействием нервных импульсов или гормонов и передающие их воздействие на другие клетки или внутриклеточные процессы. Основные из них — норадреналин, ацетилхолин, циклический АМФ. Метаболизм (обмен веществ) — комплекс биохимических и физиологических процессов, которые обеспечивают поступление в организм веществ из окружающей среды. [c.491]

    АЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ (алифатические соединения, соединения жирного ряда) — органические соединения, л которых атомы углерода соединены между собой в нрям1.1е или разветвленные цепи., Ациклические уг.певод(5роды в большом количестве содержатся в природном газе и нефти. А. с. играют очень важную роль в биологич. процессах к А. с., в частпости, относятся жиры и продукты их метаболизма, а также многие аминокислоты, входяш ие в состав белков, углеводы (сахара, крахмал, клетчатка) и др. В эфирных маслах многих растений содержатся сложные эфиры, альдегиды, спирты и др. соединения ншрного ряда. В природе обнаружены все основные классы А. с. [c.180]

    Биологическая роль а- и -амилаз в тканях (помимо запасающих тканей) остается неясной. Пока еще недостаточно данных, которые бы убедительно доказывали, что роль -амилазы сводится к снабжению растительных клеток низкомолекулярными сахарами, идущими на нужды их метаболизма. Одним из трудных моментов в вопросе о роли -амилазы как гидролитического фермента in vivo является устойчивость нативных зерен крахмала к этому ферменту [166]. Некоторые а-амилазы, напротив, гидролизуют зерна сырого крахмала со значительной скоростью. [c.147]

    У зерна пшеницы белок в эндосперме подразделяют на пять групп [63] альбумины, глобулины, глиадины, глютенины и остаточный белок. Клейковина, важная для процесса хлебопечения, представляет собой обычно смесь глютенинов, глиадинов и остаточного белка. При производстве спирта из зерна эта белковая фракция восстанавливается и в качестве побочного продукта поставляется на предприятия пищевой промышленности. Важные белки эндосперма кукурузы, зеины, родственны глиадинам пшеницы и гордеинам ячменя (табл. 1.1) [82]. Зеины представляют собой небольшие по размеру молекулы с высоким содержанием глютамина, лейцина, аланина и пролина, но с низким содержанием лизина. Некоторые зеины богаты также метионином. Основным резервным белком риса являются глютелины (около 80%), сходные по своим характеристикам с глютенинами пшеницы. В каждой зерновой культуре от растворимости накапливаемых белков зависит количество азотистых веществ в водном экстракте, доступных для метаболизма дрожжей. Хотя большинство зерновых культур, за исключением ячменя, для солодоращения не используются, в производстве спирта из зерна и большинства сортов пива для инициации процесса желатинизации крахмала кукуруза, рис и пшеница подвергаются ферментативной и последующей тепловой обработке. [c.22]

    Большие сомнения относительно роли фосфорилазы в синтезе крахмала возникают также в связи с исследованиями метаболизма гликогена в тканях животных. Три группы ученых Моммертс и сотр. [121], Ларнер и Виллар-Паласи [102], а также Шмидт и сотр. [155], независимо друг от друга сообщили, что в полученных при биопсии препаратах скелетных мышц, имевших метаболический дефект, выра- [c.149]

    Теория компартментализации, согласно которой синтетические процессы в клетке пространственно отделены от процессов расщепления, находит себе подтверждение в метаболизме крахмала мы имеем в виду фосфорилазную и амилазную реакции. Однако приведенные выше открытия по-новому раскрывают эти два различных механизма, имеющих место в клетке 1) синтез протекает с участием АДФГ и 2) расщепление происходит при участии фосфорилазы. Природа, по-видимому, организовала в живой клетке независимую работу механизмов для синтеза и расщепления макромолекул это относится и к крахмалу, и к белку, и к полинуклеотидам. [c.152]

    Совокупность химических реакций, протекающих в живом организме, называется обменом веществ, или метаболизмом (от греческого слова т 1аЪо1е — изменение). Это реакции самых различных типов. Рассмотрим, например, что происходит с пищей, потребляемой человеком. Пища может содержать сложные углеводы, в частности крахмал которые расщепляются в процессе пищеварения на простые сахара и затем через стенки желудочно-кишечного тракта попадают в ток крови. Далее эти простые сахара в печени превращаются в гликоген (животный крахмал), имеющий ту же формулу, что и обычный растительный крахмал (СдНюОб) , где X — большое число. Гликоген и другие полисахариды — важные источники энергии в организмах животных. При окислении кислородом они образуют двуокись углерода и воду одна часть освобождаемой при этом энергии идет на производство работы, а другая — на согревание тела живого организма. [c.690]

    Запасные вещества — продукты жизнедеятельности протопласта — могут откладываться в клетке в больших количествах в виде зерен крахмала, белка, капель масла и др. Электронный микроскоп позволил открыть чрезвычайно сложную высокоорганизованную субмикроскопическую молекулярную структуру клетки. Коллоид протоплазмы, мало прозрачный, казавшийся в световой микроскоп почти однородным, ожил в электронном микроскопе в протоплазме удалось обнаружить несколько пространственно организованных мембранных систем, системы ходов сообщений , связывающих ядро клетки, пачки многомембранных лакун, митохондрий и определенных участков цитоплазмы. В каждой живой клетке активно происходят сложные химические процессы, составляющие ее метаболизм, т. е. постоянные превращения и обмен веществ с другими клетками и с внешней средой. [c.14]

    Типичная клетка окружена клеточной мембраной, проницаемой только для некоторых веществ эта мембрана у растений и бактерий укрепляется окружающей пористой клеточной оболочкой, которая определяет форму клетки, но не принимает никакого участия в ее метаболизме. Содержимое клетки обычно подразделяют на цитоплазму и ядро. Цитоплазма не гомогенна, она содержит разного рода частицы митохондрии, ли-зосомы, пероксисомы, рибосомы, хлоропласты, секреторные гранулы , аппарат Гольджи, микротрубочки, центросомы, мио-фибриллы, базальные тельца ресничек или жгутиков, продукты фагоцитоза, жировые капельки и гранулы, состоящие из различных продуктов метаболизма, таких, как гликоген, крахмал, сера, поли-З-гидроксимасляная кислота, оксалат кальция и т.д. кроме того, в цитоплазме имеется так называемый эндоплазма-тический ретикулум, который может быть представлен различными формами. [c.81]

    Включения являются продуктами метаболизма микроорганизмов, которые располагаются в их цитоплазме и используются в качестве запасных питательных веществ. К ним относятся включения гликогена, крахмала, серы, полифосфата (волютина) и др. [c.9]

    Лиф [22] показал, что механизм метаболизма 2М-4Х подмаренником цепким Galium aparine заключается в разрушении боковой цепи, хотя только 7% метки из 2М-4Х-1- С или 2М-4Х-1- С, введенной в растение, выделяется в виде СОг. Тем не менее большая часть радиоактивного углерода из боковой цепи 2М-4Х отщепляется от арильной группы и включается в компоненты клетки, например в крахмал, белки и нуклеиновые кислоты. Степень разрушения боковой цепи в результате оказывается большей, чем получается по данным о декарбоксилировании. Вайнтрауб и сотр. [32] показали, [c.13]


Смотреть страницы где упоминается термин Крахмал метаболизм: [c.172]    [c.59]    [c.106]    [c.568]    [c.187]    [c.565]    [c.148]    [c.321]    [c.196]    [c.16]    [c.23]    [c.257]    [c.148]    [c.321]    [c.11]    [c.11]    [c.188]   
Углеводы успехи в изучении строения и метаболизма (1968) -- [ c.256 ]




ПОИСК





Смотрите так же термины и статьи:

Крахмал

Крахмал в процессе САМ-метаболизм

Крахмал ферменты, участвующие в метаболизме

Метаболизм

Ферменты, участвующие в метаболизме крахмала-гликогена



© 2024 chem21.info Реклама на сайте