Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутации связанные с хромосомой

    Ультрафиолетовые лучи оказывают менее резкое воздействие на хромосомы, чем рентгеновские лучи, и раньше полагали, что ультрафиолет вызывает только истинные генные мутации, не связанные с изменениями структуры хромосом. Однако теперь установлено, что ультрафиолетовое излучение может индуцировать также и структурные изменения, так что различия между рентгеновскими и ультрафиолетовыми лучами скорее касаются степени воздействия, чем сущности мутагенного эффекта. [c.215]


    Важный, но часто игнорируемый вопрос. Вопрос о том, насколько широко человеческие популяции подвергаются воздействию данного агента-решающий при получении любой оценки генетической опасности, связанной с химическими мутагенами. Это соображение иногда упускают из виду в дискуссиях, посвященных химическим мутагенам. Здесь опять, как и в случае многих других проблем, наиболее правдоподобное объяснение можно найти, обратившись к социологии науки. Большинство научных работников, занимающихся проблемами химического мутагенеза,-это специалисты в области экспериментальной генетики с опытом изучения мутаций в определенных тест-системах, например на мышах, хромосомах человека или бактериях. Вполне понятно, что их основной заботой является эффективность методов тестирования. Токсикологи, работающие в фармацевтических компаниях, которые заимствуют эти методы в целях практического их использования, обычно не знакомы с генетическими специальностями. Эпидемиологи, с другой стороны, часто очень мало интересуются генетикой и не проявляют активного интереса к проблемам мутагенеза. [c.270]

    Сбалансированные летали. Рецессивные летальные мутации, расположенные в различных локусах таким образом, что каждая из гомологичных хромосом содержит по крайней мере одну летальную мутацию, связанную с инверсией, в результате чего между гомологичными хромосомами не происходит рекомбинации. [c.314]

    Мутация — это изменение в последовательности, типе или числе нуклеотидов в молекуле ДНК, составляющей основную часть хромосомы. Изменение может быть очень небольшим, затрагивающим лишь одну пару нуклеотидов, или же очень крупным, И1 меняющим целый участок хромосомы или даже всю хромосому. В предыдущей главе под названием хромосомных аберраций мы описали мутации, связанные с изменениями участков хромосомы. [c.126]

    В тех случаях, когда наблюдаемый биологический эффект связан с возникновением ионизаций в некоторых особых молекулах (например, при генных мутациях) или вызван прохождением ионизирующей частицы сквозь некоторую особую структуру (при повреждении хромосомы), можно вычислить размеры таких молекул или структур, если известно, какая доля облучаемых организмов задета данной дозой излучения. [c.57]

    Этиология Аутосомно-рецессивное наследственное заболевание, связанное с мутацией гена, расположенного на длинном плече хромосомы 7 в области q31—q32. [c.391]

    Имеются также некоторые экспериментальные данные, говорящие о том, что эффект облучения в эндосперме связан скорее с нехватками, чем с генными мутациями. Дело в том, что когда хромосома несет два маркированных локуса, часто оба они теряют свой эффект, что говорит об исчезновении участка хромосомы, содержащего оба эти гена. [c.144]


    В отсутствие рекомбинации генетический материал каждой хромосомы был бы фиксирован в ее аллелях. Единственным источником изменчивости в этом случае служили бы мутации. Протяженность мишени для мутационных повреждений увеличилась бы от одного гена до целой хромосомы. Накопление вредных изменений в отдельной хромосоме приводило бы к ее элиминации вместе с присутствующими в ней полезными мутациями. Однако рекомбинация существует, в результате чего в хромосомах происходит перераспределение генов, полезные мутации отделяются от вредных и проверяются в новых сочетаниях. Таким образом, генетическая рекомбинация способствует спасению и распространению полезных и элиминации вредных аллелей. С эволюционной точки зрения хромосома-это непостоянная структура, образуемая временно связанными определенными аллелями. Такое непостоянство обусловлено рекомбинацией. [c.443]

    Бактерии могут выжить, имея лишь единственную хромосому в этом смысле они гаплоидные организмы. Однако динамика их деления и репликации хромосомы такова, что почти при любых условиях роста среднестатистическая бактериальная клетка содержит от полутора до двух полных хромосом. Поэтому в культурах, высеянных сразу же после обработки мутагеном, возникшие мутации с потенциально рецессивным фенотипом (например, связанные с ферментативной функцией) могут маскироваться присутствием неизмененной хромосомы в тех клонах, в которых последняя имеется. В связи с этим целесообразно дать культуре, обработанной мутагеном, расти в течение определенного периода времени и тем самым исключить возможность одновременного присутствия в одной клетке хромосомы, содержащей новую мутацию, и прежней хромосомы. Длительность этого периода зависит как от времени деления той или иной бактерии при росте в данных условиях, так и от специфики роста. Для видов или штаммов, клетки которых при росте образуют цепочки или гроздья (например, бациллы, стрептококки, стафилококки), этот период больше, чем для штаммов, растущих в виде одиночных клеток. При излишнем затягивании выращивания мутантные клетки сами начинают делиться, и тогда в одной клетке может присутствовать несколько копий одной мутации. Если хотят получить ряд независимых мутантов одного типа, то лучше всего еще во время индукции мутаций мутагеном или сразу же после нее поделить культуру на порции и затем из каждой порции отбирать после периода выращивания только по одному мутанту. Как было отмечено ранее в описании методов мутагенеза, если время обработки мутагеном достаточно велико, то выращивание проводят одновременно с индукцией мутагеном, тем самым устраняя необходимость в проведении дальнейшего выращивания. [c.26]

    Продленный мутагенез. По современным представлениям, появление мутаций не одномоментный акт реакции мутагена с участком хромосомы или геном, а очень сложный процесс. Он состоит из трех этапов. На первом этапе в результате взаимодействия мутагена и молекулы ДНК возникают первичные молекулярные повреждения в хромосоме. Второй этап, получивший название пред-мутационного состояния, связан с изменением структуры ДНК. На третьем этапе появляется собственно мутация как следствие фиксации потенциального изменения. [c.195]

    Как правило, прямые мутации рецессивные, а обратные — доминантные. Поэтому для большинства генов частота прямых мутаций значительно выше, чем обратных. Очень часто рецессивные мутации связаны с утерей наследственного материала хромосомы, и обратная мутация в этом случае невозможна. Некоторые не- большие хромосомные нехватки по их внешнему проявлению бывают трудно отличить от точковых мутаций, не связанных с утерей наследственного материала хромосомы. Но это различие можно установить по способности полученного изменения к обратному мутированию. [c.206]

    Исследования последнего десятилетия обнаружили, что в некоторых генах, связанных с развитием наследственных неврологических болезней, имеются участки, представляющие собой тандемно организованные триплетные повторы. В норме число тандемных повторов варьирует в определенных для каждого гена пределах, однако у каждого человека имеется два варианта таких повторов, полученных им от каждого из родителей. В некоторых случаях по пока еще не ясным причинам происходит резкое увеличение числа повторов в том или ином гене, выходящее далеко за пределы его нормальной вариабельности. Это явление получило название экспансии триплетных повторов или динамической мутации и с ним связано развитие того или иного неврологического заболевания. Впервые этот феномен был обнаружен в 1991 г. при синдроме ломкости Х-хромосомы. В табл. 3 приведены примеры болезней, связанных с экспансией триплетных повторов. Видно, что последовательность триплетов, участвующих в описываемом явлении, может различаться - но большая их часть представлена повторами типа СХС, где X - любой из четырех нуклеотидов. Было показано, что с увеличением размера блока триплетных повторов тяжесть заболевания обычно возрастает. [c.316]

    Ряд заболеваний связан с нарушением синтеза коллагена. Основная причина — мутации. Гены коллагена широко представлены в разных хромосомах, они очень большие, имеют много коротких экзонов, между которыми располагаются большие интроны. [c.166]


    Облучение индуцирует как генные мутации, так и структурные хромосомные перестройки всех описанных выше типов нехватки, инверсии, удвоения и транслокации, т. е. все структурные изменения, связанные с разрывом хромосом. Причиной этого являются некоторые особенности процессов, происходящих в тканях при действии излучений. Излучения вызывают в тканях ионизацию, в результате которой одни атомы теряют электроны, а другие присоединяют их образуются положительно или отрицательно заряженные ионы. Подобный процесс внутримолекулярной перестройки, если он происходил в хромосомах, может вызвать их фрагментацию. [c.150]

    При воздействии на личинок дрозофилы высокой температурой развивались взрослые мухи, очень схожие с особями, полученными в результате генных мутаций в хромосомах. Аналогичный эффект наблюдается при добавлении в пищу личинок сублетальиых доз цианидов, солей серебра и хинина. Под влиянием повышенной температуры и указанных химических веществ у взрослых особей происходили хорошо видимые изменения фенотипа с частотой 70— 907о. При этом было установлено, что характер индуцированных фенотипических изменений у мух зависел от стадии, в которой личинки подвергались воздействию, продолжительности воздействия и от типа индуктора. Следовательно, процесс индукции фенокопий отличается высокой степенью специфичности. Так как у потомства фенокопий, полученного путем полового размножения, изменения отсутствуют, считают, что этот вид цитоплазматической изменчивости связан с индуцированным изменением функции генов или плазмогенов, а не их структуры. [c.123]

    Кроме фенотипических эффектов, возникающих при нехватках и дупликациях в результате отсутствия некоторых генов или наличия лишних генов, иногда наблюдается фенотипический эффект и при некоторых инверсиях и симметричных обменах, в которых, насколько можно судить по хромосомам слюнных желез, нет ни потери, ни излишка хромосомного материала, а наблюдается только его перемеш,ение. [Это наблюдается у дрозофилы у растений этот эффект обычно отсутствует Фенотипический эффект при этом сводится к изменению признаков, связанных с действием генов, расположенных непосредственно рядом или вблизи от мест разрывов хромосом. Возможное объяснение заключается либо в том, что ионизируюш.ая частица, которая вызывает разрыв, одновременно вызывает и мутацию расположенного рядом с разрывом гена, либо в том, что действие гена может быть изменено влиянием генов, находящихся с ним по соседству, и поэтому действие гена меняется, если при структурной перестройке разрыв происходит вблизи него, хотя никаких внутренних изменений в самом гене не произошло (эффект положения).] [c.112]

    Далее, те опыты, на которые мы уже ссылались (Н. П. Дубинин, Б. Н. Сидоров, 1935 Мёллер, 1941) и которые показали, что некоторые изменения, связанные с гетерохроматином, безусловно, представляют собой эффект положения, не могут быть применены к случаям изменения генов, локализованных в непосредственной близости к разрыву. Таким образом, вопрос о природе мутационных изменений, которые сопровождают структурные изменения хромосом, не затрагивающие гетерохроматиновые районы, нельзя считать окончательно решенным. Это особенно досадно потому, что большая часть сцепленных с полом рецессивных леталей, на которых проведена главная масса экспериментов по получению мутаций под влиянием облучения, сопровождается структурными изменениями хромосом. Для того чтобы понять механизм действия облучения, необходимо знать, представляют ли собой эти летальные мутации результат эффекта положения гена, расположенного около разрыва,— эффекта, возникшего потому, что данный ген был удален от своего обычного соседа и перенесен к другому гену, или они происходят вследствие внутренних изменений генов, вызванных ионизирующей частицей, как причиной разрыва хромосомы. [c.113]

    Переходим теперь к рассмотрению летальных мутаций независимо от того, в каких локусах они происходят. Подобное рассмотрение имеет то преимущество, что в этом случае нам известна относительная эффективность разных излучений (см. табл. 39.)Как уже указывалось, летали не представляют собой единого типа изменений. Однако, согласно взгляду, выдвинутому в одном из предыдущих разделов этой главы, летали типов А и В вызываются одной причиной. Летали же типа Б, т. е. связанные с цитологически обнаружимыми нехватками, иного происхождения. Во всяком случае нехватки более чем одного диска, вероятно, являются результатом двух разрывов и выпадения участка хромосомы между ними и не обязательно связаны с ионизацией гена, ответственного за летальный эффект. Поэтому мы должны были бы исключить нехватки участков хромосом и после этого определить частоту мутаций и отно- [c.139]

    Некоторые из способов проверки, предложенных в главах П1—V при обсуждении представления о зависимости инактивации частицы вируса или мутации гена от единичной ионизации, будут применены и в данном случае. Предполагается, что если разрыв хромосомы вызывается одной ионизирующей частицей, то число разрывов, вызванных данным типом излучений, будет пропорционально дозе и независиг.ю от интенсивности облучения и температуры. Однако обнаружить все первоначально вызванные разрывы не представляется возможным. Аберрации, обнаруживаемые в слюнных железах или методами скрещивания, у дрозофилы представляют собой не простые разрывы, а перестройки, связанные с двумя или большим числом разрывов. У традесканции, у которой наряду с более сложными перестройками происходят и простые разрывы, последние не представляют их общего числа. Это лишь остаток, сохранившийся после того, как многие первичные разрывы приняли участие в перестройках, а многие другие воссоединились . Поскольку, возможно, доля участвующих в перестройках или воссоединяющихся разрывов зависит от интенсивности облучения и температуры, применение предложенных выше способов проверки встречает затруднения. Например, у традесканции частота хроматидных разрывов уменьшается с повышением температуры (см. рис. 35, б, кривая 1). Это, по-видимому, следует объяснить исходя из представления, что повышение температуры способствует воссоединению. Имеются также некоторые указания на то, что повышение температуры (см. рис. 35, г) или облучение ультрафиолетовыми или инфракрасными лучами способствует воссоединениям в спермиях дрозофилы. [c.190]

    Множественный аллелизм. При анализе наследования, связанного с независимым комбинированием генов, их взаимодействия и сцепленного состояния мы исходили из представления о двух возможных состояниях гена одного участка гомологичных хромосом, например Л и а или В и Ь. Но в процессе изучения мутаций было установлено, что один и тот же локус хромосомы в результате изменения своего строения может находиться в нескольких состояниях, образуя не два, а серию аллелей. Это явление получило название мноокественного аллелизма (рис. 86). Например, по гену окраски глаз у дрозофилы выявлена серия аллелей, состоя- [c.209]

    Мутацию white удалось локализовать в определенной хромосоме потому, что она оказалась связанной с полом. Обычно гомологичные пары хромосом при расхождении в мейозе образуют идентичные гаплоидные наборы. Однако у многих организмов, размножающихся половым [c.13]

    Первые указания на то, что в системе репликации ДНК участвует целый ряд важных генетических функций, были получены благодаря выделению широкого набора условно-летальных температурочувствительных мутантов Е. соН (dna ), комплементационный анализ которых позволил соотнести их с мутациями в ряде различных генов. Среди них можно выделить два класса мутантов, которые при рестриктивной температуре (1) немедленно прекращают синтез ДНК или (2) в течение относительно протяженного временного интервала постепенно прекращают синтезировать ДНК (рис. 13.5). Первый фенотип связан с нарушением процесса синтеза ДНК в репликативной вилке, а второй-с исчезновением способности инициировать новый цикл репликации хромосомы. (В несинхронизированной культуре индивидуальные клетки мутантов второго класса, находящиеся на различных стадиях репликации, начавшейся еще при пермиссивной температуре, не прекращают синтезировать ДНК после повышения температуры до полного завершения цикла репликации хромосомы.) После сопоставления выделенных мутаций с определенными белками, на которых сказываются эти мутации, можно начать изучение функциональной роли этих белков in vivo. Локализация генов, ответственных за репликацию ДНК, на хромосоме Е. соИ показана на рис. 13.6. [c.112]

    Доказательства этой гипотезы опираются на два рода данных. Во-первых, нормальный фенотип самок ХО у мыши свидетельствует о том, что для полноценного развития ей необходима только одна активная Х-хромосома. Во-вторых, у самок мышей, гетерозиготных по некоторым Сцепленным с полом генам, обнаруживается мозаицизм. Так, самки, гетерозиготные по сцепленным с полом мутациям, затрагивающим окраску шерсти, имеют шкурку с пятнами нормальной и мутантной окраски. Этот факт заставляет думать, что мозаичный фенотип в данном случае обязан своим возникновением инактивации одной или другой Х-хромосомы еще в эмбриональном развитии. Эта гипотеза предсказывает, что все гены, локализованные в Х-хромосоме и находящиеся в гетерозиготном состоянии, будут иметь мозаичное проявление, так же будут проявляться и аутосомные гены, транс-лоцированньге на Х-хромосому. Когда фенотип не связан с локальным действием гена, возможны различные типы фенотипических распределений. Следовательно, фенотип будет промежуточным между нормальным и гемизиготным, что приведет к неполной пенетрантности у гетерозигот. [c.104]

    Трудности в выявлении гетерозигот. Если о гетерозиготности судят по уровню ферментативной активности или на основании какого-либо количественного анализа крови, часто возникают осложнения, связанные с перекрыванием значений. Методы поиска гетерозигот могут заметно различаться для носителей аутосомно-рецессив-ных или сцепленных с Х-хромосомой мутаций, с одной стороны, и для носителей гена аутосомно-доминантного заболевания, с другой. В большинстве случаев средние уровни анализируемого вешества у гетерозигот и у нормальных индивидов достоверно различаются. Однако при этом, как правило, имеет место значительное перекрывание выборочных распределений, так что многие здоровые люди по уровню анализируемого вешества могут быть ошибочно приняты за гетерозигот. Причины этого явления не вполне ясны, возможно, оно связано с сушествованием невыявлен-ных изоаллелей , каждый из которых определяет свой диапазон уровней ферментативной активности (разд. 3.6). При использовании количественных тестов для правильной интерпретации результатов важно оценить априорную (или байесовскую) вероятность гетерозиготности. [c.59]

    Бимодальность кривой распределения жизнеспособности в опытах с гомозиготными хромосомами может быть обусловлена любой из двух рассмотренных причин, связанных с проблемой генетической природы изменчивости. Возникновение летального и квазинормального модальных классов может быть вызвано совершенно разными причинами. Летальность хромосомы обусловлена в основном моногенными эффектами, однако мы не можем сказать ничего определенного о полулеталях, которые появляются в опытах с синтетическими леталями в гораздо боль-ше.м числе, чем летали. Квазинормальная мода, однако, может быть результатом большого числа генов с малыми эффектами,, суммируемыми в каждой хромосоме, в результате чего получается примерно нормальное распределение по жизнеспособности гомозигот. С этой точки зрения две моды возникают по двум совершенно разным причинам летальная мода отражает редкие вредные классические мутации , квазинормальная — фоновое распределение обычной аллельной изменчивости основной массы локусов. Это соответствует балансовой гипотезе. [c.65]

    На первый взгляд кажется, что близкое сходство разных популяций по аллельному составу должно быть сильным доводом в пользу уравновешивающего отбора, потому что такое сходство не согласуется с тем, чего можно ожидать от случайного процесса. Если аллельные частоты — результат возникающих изредка мутаций, распространяющихся случайным дрейфом, то мы ожидаем, что две сравниваемые популяции будут иметь приблизительно одинаковую среднюю гетерозиготность, но полиморфные локусы в разных популяциях не будут одними и теми же и частоты отдельных аллелей в каждом данном локусе не будут связаны друг с другом. В том-то и состоит сущность процесса дрейфа, что отдельный аллель, встречающийся с высокой частотой в одной популяции, никак не связан с аллелем, преобладающим в другом месте. Однако наблюдения, изложенные в гл. 3, четко показывают, что одни и те же аллели имеют одинаковую частоту в разных популяциях. Если исключить боготскую популяцию и гены, ассоциированные с инверсиями в третьей хромосоме, частоты аллелей у D. pseudoobs ura замечательно сходны во всех исследованных популяциях от Калифорнии до Техаса и Гватемалы. То же сам[ое справедливо для D. willistoni и в разной степени для других обследованных организмов, в том числе для человека. [c.217]

    Порядочный человек — это тот, кто отвечает моральному среднему уровню определенного коллектива. Гражданская война возникает тогда, когда оказывается два или более коллектива в одной стране, резко различающихся по своим моральным кодексам — непримиримость моральных кодексов приводит или к исчезновению одного коллектива, или к отказу от обязательности тех особенностей кодексов, которыми отличаются кодексы разных коллективов. Вырабатывается один общий моральный кодекс и следующие ему называются порядочными людьми. Как сказано в Апокалипсисе Хуже, что ты не холоден и не горяч, а тепел, и я изблюю тебя из своего рта . Порядочный человек — теплый человек. Он вполне приличен в нормальное время, но возникает какая-то идеологическая мутация , отнюдь не связанная с хромосомами, массовый психоз, один коллектив расщепляется на два с непримиримыми идеологиями, и вполне порядочные люди превращаются в чудовища. Вернее, для лиц иного коллектива они кажутся чудовищами, а сами они считают своих противников чудовищами, нелюдьми и проч. [c.261]


Смотреть страницы где упоминается термин Мутации связанные с хромосомой: [c.253]    [c.253]    [c.326]    [c.181]    [c.50]    [c.78]    [c.67]    [c.209]    [c.162]    [c.316]    [c.26]    [c.272]    [c.226]    [c.167]    [c.167]    [c.51]    [c.71]   
Современная генетика Т.3 (1988) -- [ c.275 , c.276 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2024 chem21.info Реклама на сайте