Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атом гелия

    Инертные газы инертны потому, что на них заканчивается заполнение -Г0 слоя, а такие системы особенно компактны и устойчивы. По той же причине атомы щелочных металлов водородоподобны. Они содержат один электрон сверх заполненных слоев, образующих компактный остов. Особой устойчивостью заполненных слоев объясняется и высокое сродство к электрону у галогенов. Атом бериллия не похож на атом гелия потому, что он легко возбудим в состоянии то вре- [c.182]


    Атом гелия содержит на первом электронном слое 2 электрона. Это показано формулой 1 . Графически структуру первого квантового слоя (атома Не) следует [c.34]

    Успех теории Бора ограничился возможностью ее применения только к атому водорода. При попытках применения теории Бора к атому гелия она уже оказалась малоэффективной. Расчеты более сложных атомов на основе применения упрощенных представлений Бора выполнить оказалось вообще невозможно. Несмотря на внесенные Арнольдом Зоммерфельдом (1863— 1951) в теорию Бора усовершенствования, в связи с которыми была учтена возможность движения электронов в атоме не только по круговым, но и по эллиптическим орбитам, эта теория должна была уступить место новым воззрениям. [c.26]

    Таким образом, теперь ясно видна необходимость использования трех квантовых чисел для описания энергии электрона. Каждое новое квантовое число вводилось для удовлетворения требований эксперимента. Однако даже с этими тремя квантовыми числами невозможно было полностью объяснить линейчатые спектры. Например, действие слабого магнитного поля приводит к так называемому аномальному эффекту Зеемана, который нельзя было понять на основе модели Бора — Зоммерфельда. Кроме того, у атома Бора и его вариантов было множество других недостатков. Одним из них, и, по-видимому, наиболее существенным, была невозможность применения теории Бора к более сложным атомам. Приложение ее к спектру даже такого простого атома, как атом гелия, приводило к полной неудаче, и все попытки понять основы периодической системы в рамках модели Бора были безуспешны. Это показывает, что все вышеизложенное верно только для одноэлектронной системы. Такое ограничение не имеет смысла, и поэтому очевидна необходимость найти что-то лучшее. [c.37]

    Атом гелия в состоянии 1 [c.201]

    Атомы всех элементов, кроме водорода, многоэлектронные. Волновые функции и уровни энергии для них в принципе можно найти, решив уравнение Шредингера. Однако точное решение этого уравнения для многоэлектронных систем невозможно задача усложняется тем, что электрон движется-уже не в поле ядра, а в поле, создаваемом ядром и остальными электронами. Рассмотрим простейший из многоэлектронных атомов — атом гелия, состоящий из ядра (2=2) и [c.34]

    Для двухэлектронной системы, такой, как атом гелия в состоянии электроны в синглетном состоянии (спины антипараллель-ны) имеют тенденцию к совместному стягиванию, тогда как в триплетном состоянии (спины параллельны) наблюдается об-ратное Этот факт является не результатом действия сил отталкивания между электронами, а следствием требуемого вида волновой функции, учитывающей принцип неразличимости электронов. Для атома гелия, в котором электроны находятся на ненаправленных ч-орбиталях, пространственное распределение электронов следующее для симметричного, или синглеттюго состояния наиболее вероятны три конфигурации — две, в которых один электрон находится ближе, а другой дальше от ядра, и третья, в которой оба электрона находятся одновременно одинаково близко от ядра для антисимметричного, или триплетного состояния наибольшую вероятность имеют только две конфигурации — один электрон находится ближе, а другой дальше от ядра. Так как з-орбитали не содержат угловой зависимости, электронная корреляция (корреляция между положениями электронов) будет только радиальной. Сточки зрения стереохимии интересны волновые функции, которые включают угловую зависимость. В связи с этим ниже более детально будет рассмотрен атом гелия в состоянии з -2р1. [c.201]


    Во что обратился бы атом гелия, если бы из его ядра был удален протон, а электронная оболочка осталась бы без изменений  [c.44]

    В соответствии с изменениями потенциалов ионизации в периодах и группах в общем происходит относительное изменение свойств элементов. Однако потенциал ионизации не может служить единственной количественной мерой относительной металличности или неметалличности элементов. Действительно, самым высоким потенциалом ионизации обладает атом гелия, но так как он относится к инертным элементам, говорить о характере его свойств довольно трудно. Далее, если рассмотреть изменение потенциала ионизации в пределах второго периода (см. рис. 8, — Не), то обнаруживаются скачки. Потенциал ионизации у кислорода оказывается меньше, чем у азота. Такие скачки, связанные с некоторыми особенностями строения внешних электронных оболочек атомов, наблюдаются и в остальных периодах, хотя неметаллические свойства нарастают. [c.65]

    Электрон сокращенно обозначается в , позитрон — е+, нейтрон — ап а протон — р. Например, атом гелия сокращенно обозначают гНе , где нижняя цифра — величина заряда ядра (число протонов в ядре), верхняя — масса атома. [c.41]

    Существуют два способа объяснения характера ковалентной связп— метод валентных связей (ВС) и метод молекулярных орбиталей (МО). Первый метод основан на предложенном В. Гейтлером и Ф. Лондоном (1927) решении уравнения Шрёдингера для молекулы водорода На (примененном ранее Гейзенбергом к атому гелия). В тридцатых годах этот метод усовершенствован Дж. Слейтером и Л. Полингом. Второй метод — молекулярных орбиталей — создан несколько позднее Р. Малликеном, Ф. Хундом, Э. Хюккелем, Дж. Леннардом-Джонсом и Ч. Коулсоном. В пятидесятые годы важный вклад в развитие метода сделал К. Рутан, использовав уравнения самосогласованного поля (ССП), разработанные Д. Хартри и В. Фоком для многоэлектронных атомов. Создание математического аппарата и электронно-вычислительных машин позволило проводить многочисленные теоретические расчеты для молекул, беря из опыта значения только межъядерных расстояний. Метод молекулярных орбиталей более употребителен и поэтому рассмотрен более подробно, чем метод валентных связей. [c.176]

    Ранее уже упоминалось, что нет принципиального различия между природой межатомной химической связи и природой устойчивости самих атомов. Силы , которые удерживают систему— атом гелия (ядро и два электрона), те же, что и в молекуле водорода Нг (два ядра, два электрона) или в молекулярном ионе водорода Нг+ (два ядра, один электрон). Рассмотрим образование химической связи на примере Н2+-иона и молекулы Нг, так как на этих примерах удобнее всего познакомиться с методами квантовой механики. [c.75]

    Таким образом, в основном состоянии атом гелия имеет 2 электрона Не (1з)". [c.456]

    Энергия возбуждения в состоянии с увеличением главного квантового числа велика по сравнению с энергией химического взаимодействия, и поэтому атом гелия, например, никогда не [c.456]

    Как указывалось выше, насыщаемость — наиболее характерная черта сил химического взаимодействия. Поэтому уже в первой работе В. Гайтлер и Ф. Лондон показали, что, в частности, атом гелия не способен к образованию связи с другими атомами. [c.474]

    Наличие у материальных частиц волновых свойств было подтверждено экспериментально. В 1927 г. американские физики Дэвиссон и Джермер и англичанин Томсон с помощью пучка электронов получили дифракционную картину, подобную той, что была известна с 1912 г. для рентгеновских лучей. Позднее появились экспериментальные доказательства наличия волновых свойств у таких материальных объектов, как протон, нейтрон, атом гелия, молекула водорода. Таким образом, было доказано, что описание поведения микрообъектов должно обязательно учитывать их волновые свойства. [c.162]

    Длину волны такой частицы часто называют длиной волны де Бройля. Для любой частицы с массой т и известной скоростью длину волны де Бройля можно рассчитать. Например, для электрона с энергией около 1,6- 10" эрг, а это довольно низкая энергия, длина волны де Бройля будет порядка 1,2 А. Эта величина примерно соответствует параметрам кристаллических решеток. Используя близость значений кристаллических параметров и длины волны де Бройля для электрона с энергией около 1,6-10 эрг, Дэвиссон и Джермер показали, что электрон и в действительности имеет волновой характер. Применяя кристалл никеля как дифракционную решетку, они получили дифракционную картину, которую можно было легко объяснить с помощью волнового движения электрона. Если об истинности корпускулярного характера электрона может возникнуть вопрос, то волновые свойства были обнаружены для таких бесспорно материальных частиц, как нейтрон и атом гелия. [c.41]

    Атом гелия имеет сферическую симметрию, поэтому не имеет дипольного момента. Однако такое представление основано на усреднении во времени. Если снять мгновенную фотографию атома гелия, то будет видно несимметричное распределение электронов вокруг ядра в данный момент. Следовательно, должен быть мгновенный диполь. Такой диполь вызовет также мгновенный диполь в другом атоме, что может привести к синхронному полю во всей системе. От этого произойдет уменьшение энергии системы, но взаимодействие будет очень слабым. [c.185]


    Примером двухэлектронной системы служит атом гелия. Рассмотрим возможные распределения двух электронов между 15-из 25-АО атома гелия. Различные варианты распределения электронов по орбиталям атома гелия показаны на рис. 9, где электрон со спиновой функцией а обозначен стрелкой, направленной вверх, а со спиновой функцией р — вниз. [c.57]

    Атом гелия в возбужденном состоянии 1 [c.201]

    В некоторых случаях понятия атома и молекулы с точки зрения атомно-молекулярной теории могут формально совпадать. Например, атом гелия (калия, меди и т. п.) — это наименьшая частица гелия (калия, меди и т. п.), обладающая всеми химическими свойствами данного вещества. [c.20]

    Следующим по величине заряда ядра Z = 2) является атом гелия. Число электронов 2. Конфигурация 1 5. В нормальном состоянии атома оба электрона находятся в первом квантовом слое. Различаются они один о г другого лишь направлением спина. [c.24]

    Рассмотрите возбужденный атом гелия, в котором один электрон находится на водородоподобной орбитали с квантовыми числами И[, /[, шц, а другой — на орбитали с квантовыми [c.35]

    Применение теоремы о вириале. Рассмотрим теперь систему, состоящую из двух атомов с — атом гелия, й — атом водорода. С позиций классической электростатики эта система может быть представлена схемой, изображенной на рис. 4. Начало координат расположим в точке, где помещается ядро атома гелия. Радиусы-векторы г . Гг, Гд и r = И определяют одно из возможных положений протона и электронов по отношению к ядру гелия. Между частицами действуют [c.51]

    Рис. 98 подводит принципиальный итог содержанию настоящей главы. Ясно, что водород является прототипом атомов, содержащих непарный электрон (открытых атомов), а потому реакционноспособен атом гелия— прототип всех инертных до своего возбуждения атомов (закрытых). [c.170]

    Первые периодические таблицы были очень полезны с практической точки зрения, но они мало помогали в понимании того, что определяет сходство или различия элементов между собой. Это понимание пришло примерно на 50 лет позже, и именно оно находится в основе современной периодической системы. Вспомним, что атомы состоят из микроскопических частиц из равного количества положительно заряженных протонов и отрицательно заряженных элеь тронов (гл. I, разд. Б.6). Одной из главных характеристик, по которой различаются атомы элементов, является число протонов — атомный номер. Каждый атом натрия содержит 11 протонов, а каждый атом углерода содержит 6 протонов. Если число протонов в атоме равно 9, то это атом фтора, если 12 - это атом магния. Атом водорода содержит один протон, в результате атомный номер водорода — единица. Атом гелия содержит два протона, и, следовательно, его атомный номер — 2. [c.125]

    Рассмотрим атомь благородного газа гелия (Не). Каждый атом гелия содержит два протона в ядре и два электрона в окружающем его пространстве. Эти два элек т1Х1на занимают первый, или внутренний, энергетический уровень и это максимальное количество электронов, которое может находиться на данном уровне [c.185]

    Он распространяется не только на такую двухэлектроннук> систему, как молекула водорода, но и на атом гелия, и на любую другую двухэлектронную систему. Оба электрона 1 и 2 характеризуются координатами Х п Х2 а волновыми функциями фт и а15п. Отвлечемся сначала от взаимодействия между части- [c.81]

    Особенно характерно образование соединений между молекулами, одна из которых имеет низко лежащую свободную МО, а другая — 1есвязывающую орбиталь атомного типа, заполненную двумя электронами.. Перекрывание этих дв>т( МО приводит к образованию новых двух МО, общих для всей системы, и возникновению прочного химического соединения (рис. 53). Возникающая таким образом связь по своему происхождению называется донорно-акцепторной связью. Молекула с низколежащей свободной орбиталью называется акцептором электронов, а имеющая пару электронов на несвязывающей МО — донором. Примером донорно-акцепторного механизма образования химической связи в двухатомных молекулах может служить образование молекулярного иона НеН из атома Не и иона Н . Атом гелия имеет два электрона ка ] -орбитали с энергией —24,6 эВ (ПИ = = 24,6 эВ). Его рассматривают как типичный инертный атом с заполненной оболочкой. У иона имеется свободная 15-орбиталь с энергией —13,6 эВ. При контакте Не и Н возникает НеН -ион, а-МО которого можно представить как линейную комбинацию 15-орбиталей атома Не и иона Н  [c.140]

    И атом гелия в основном состоянии. Вследствие того что МО (2iTg) является связывающей и ил еет более низкую энергию, чем [c.164]

    Так, открытие земного гелия стало свершившимся фактом. Оказалось, что гелий, подобно аргону,— химически инертный газ. Его молекула, так же как молекула аргона, одноатомна. В 1895 г. П. Клеве и В. Рамзай установили, что атом гелия в четыре раза тяжелее атома водорода, т. е. атомная масса гелия 4. После водорода это был самый легкий газ. [c.285]

    Рассмотрим, например, атом гелия с двумя электронами, в котором наблюдается Ь—8-связь. Для двух электронов суммарный спин может равняться нулю или единице (антипараллельное и параллельное направление спинов отдельных электронов). Таким образом, схема термов гелия распадается на дйе груп-лы — термы парагелия (суммарный спин равен нулю) и термы ортогелия (суммарный спин равен единице). Такое разделение оправдано тем, что между термами обеих групп вообще нет переходов. Так называемые правила отбора, полученные экспериментально и обоснованные теоретически, утверждают, что воз- можны только такие переходы, при которых суммарный спин сохраняется, т. е. Д5=0. [c.190]

    Энергия возбуждения в состоянии с увеличением главного квантового числа велика по сравнению с энергией химического взаимодействия, и поэтому атом гелия, например, никогда не имеет двух валентностей, так как затрата для перехода в состояние (1х) (25) не скомпенсируется выигрышем энергии при химическом взаимодействии. [c.580]


Смотреть страницы где упоминается термин Атом гелия: [c.16]    [c.234]    [c.340]    [c.44]    [c.6]    [c.7]    [c.71]    [c.43]    [c.20]    [c.11]    [c.79]    [c.55]    [c.232]   
Смотреть главы в:

Физическая химия -> Атом гелия

Квантовая механика молекул -> Атом гелия

Теория валентности -> Атом гелия

Как квантовая механика объясняет химическую связь -> Атом гелия

Электронное строение и химическая связь в неорганической химии -> Атом гелия


Физическая химия (1978) -- [ c.392 ]




ПОИСК





Смотрите так же термины и статьи:

Атом гелия возбужденное состояние

Атомы гелия простейшие вандерваальсовы взаимодействия

Атомы со многими электронами 92. Запрет Паули 96. Атом гелия

Возбужденные состояния атома гелия. Орто- и парагелий

Волновые функции для атомов гелия

Волновые функции для движущегося атома гелия

Вычисление энергии для атома гелия

Гелий атом, строений

Гелий модель атома

Гелий невалентные взаимодействия атомов

Гелий распределение электронов в атоме

Гелий с атомами водорода

Гелий электронная конфигурация атома

Гелий ядро атома также Альфа

Гелия атом, примеры расчетов

Два сближающихся атома гелия

Двухэлектронная система атом гелия

Квантовая механика многих тел. Атом гелия

Первое возбужденное состояние атома гелия

Поведение атомов примесей в гелии

Положение атомов гелия в бериллии и их диффузионная подвижность

Применение вариационного метода к атому гелия

Рассмотрение атома гелия в рамках теории возмущений первого порядка

Рекомбинация атомов гелия

СПЕКТРЫ МАГНИТНОГО РЕЗОНАНСА АТОМОВ ВОДОРОДА И ГЕЛИЯ

Скорость движения атомов гели

Спектр ЯМР атома гелия

Спектры атомов и ионов с двумя валентными электронами. Атом гелия и сходные с ним ионы

Точный расчет энергии атома гелия

Энергии уровни атома гелия

Энергия атома гелия

Явление обмена в атоме гелия

отношение уровней энергии к уровням атома гелия



© 2025 chem21.info Реклама на сайте