Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тиофен с нуклеофильным

    Тиофен и алкилтиофены не вступают в реакции замещения или присоединения с нуклеофильными агентами. Под действием сильных оснований они депротонируются по а-углеродному атому так же, как фураны и Ы-алкилпирролы. [c.252]

    Нуклеофильные реакции тиофенов 247 [c.7]

    НУКЛЕОФИЛЬНЫЕ РЕАКЦИИ ТИОФЕНОВ [c.247]

    Можно считать, что тиазол более ароматичен, чем тиофен. Имея гетероатомы, входящие в состав пиридина и тиофена, он совмещает свойства того и другого гетероцикла. Как и пиридин, он проявляет способность вступать в реакции нуклеофильного замещения. Так, с амидом натрия он образует 4-аминотиазол  [c.696]


    Чрезвычайно важное значение для синтеза различных производных пиррола, тиофена и фурана имеют реакции депротонирования. Фуран и тиофен депротонируются такими сильными основаниями, как -бутиллитий и диизопропиламид лития, и при этом образуется а-анион, поскольку атом водорода в этом положении обладает подвижностью вследствие индуктивного электроно-акцепторного влияния гетероатома. Полученный таким образом анион способен реагировать с самыми разнообразными электрофилами с образованием а-замещенных фуранов и тиофенов. Эта методология существенно расширяет возможность использования процессов электрофильного замещения в синтезе различных производных фуранов и тиофенов, поскольку позволяет получать исключительно а-замещенные соединения, а также использовать даже слабые электрофильные реагенты. Использование металлированных Ы-замещенных пирролов также обеспечивает ценный синтетический подход к различным а-за-мещенным пирролам. При отсутствии заместителя при атоме азота депротонирование пиррола приводит к пиррил-аниону, который обладает нуклеофильными свойствами, и при его взаимодействии с электрофильными реагентами образуются производные индола, замещенные по атому азота. [c.307]

    Тиофен, действующий как маскированная нуклеофильная по юнцам бутановая цепочка, может применяться для получения гомологов жирных кислот [104] схема (62) . [c.27]

    Тиофен является слабым ингибитором кислотной коррозии железа [34]. Однако его ингибирующие свойства усиливаются при введении как нуклеофильных, так и электрофильных заместителей [132]. Адсорбция тиофена и его производных приводит к блокировке поверхности, что и является основной причиной ингибирования. Известны высокие ингибирующие свойства серусодержащих производных имидазола. [c.107]

    Следует более подробно рассмотреть дипольные моменты указанных гетероциклов, поскольку иногда допускают ошибку, принимая гетероатомы всех трех соединений за положительные концы диполей. Эта ошибка, по-видимому, вызвана тем впечатлением, что в системах с высокой реакционной способностью избыток отрицательного заряда должен быть сосредоточен на наиболее нуклеофильном атоме углерода. В действительности же отрицательные концы диполей как в фуране, так и в тиофене находятся на гетероатомах. [c.20]

    Первая стадия реакции - протонирование тиофенового соединения - зависит, естественно, от нуклеофильности конкретного производного тиофена, определяющей равновесную концентрацию образующегося 2Я-тиофениевого иона. Незамещенный тиофен гидрируется очень медленно, однако введение одной или двух алкильных групп приводит к резкому ускорению реакции [28, 29]. Вторая стадия -присоединение гидрид-иона к 2Я-тиофениевому иону - протекает необратимо, что сдвигает равновесие, установившееся на первой стадии. В результате последующих протонирования образовавшегося дигидротиофена и присоединения гидридиона к возникшему при этом катиону последний превращается в тетрагидро-тиофен. [c.32]


    Казалось бы, что поскольку элек рофильное замещение в ряду тиофена протекает легче, чем в ряду бензола, то нуклеофильное замещение должно быть менее эффективным. Это, однако, далеко от истины. Теоретические исследования, рассмотрение интермедиатов и экспериментальные данные показывают, что для обоих типов реакций замещения наблюдается сходное (более чем тысячекратное) увеличение реакционной способности (см. табл. 19.1.7). В отличие от бензолов при любом взаимном расположении галогена и нитрогруппы в молекуле галогеннитротиофена наблюдается сильная активация галогена в реакциях нуклеофильного замещения. Это становится понятным при рассмотрении интермедиатов Майзенхаймера (см., например, схемы 20, 21) (1) в о-комплексе, образуемом тиофеновым соединением, нитрогруппа более эффективно участвует в делокализации отрицательного заряда, чем в случае бензольного аналога (2) в случае тиофенов достигается лучщее, чем в случае бензолов, сопряжение нитрогруппы с кольцом, обусловленное больщим вкладом структур типа (37) по сравнению с (38)  [c.247]

    Реакция Гилмена нашла широкое применение в ряду тиофена. Металлирование тиофенов лучше всего проводить действием литийорганических производных, обычно н-бутиллития, в эфирном растворе, но иногда используют также магний-, натрий- и ртутьорганические производные. Металлирование протекает быстро и практически количественно при комнатной температуре, в большинстве случаев с высокой региоспецифичностью и приводит к а-металлированным тиофенам (табл. 19.1.10). В отличие от других реакций нуклеофильного замещения заместители в положении 2, Роме а-пиридила, не влияют на эту позиционную селективность, сказываются только на скорости металлирования, что можно идеть по результатам конкурирующих реакций. Металлирование Утиллнтием начинается с координации электроположительного Сталла по атому серы тиофенового кольца, после чего происходит Рыв соседнего наиболее кислого протона бутил-анионом н заме-ние его металлом. Вследствие этого селективность металлирова- Р Замещенных тнофенов определяется сочетанием ряда факто- [c.251]

    Как отмечалось в разделе 1.2, ацетилен может реагировать с сульфидом натрия и в чисто водной среде, образуя,ДВС с выходом до 5%. Учитывая гораздо большую реакционную способность диацетилена в реакциях нуклеофильного присоединения, естественно было ожидать, что в водной среде он будет реагировать с Na2S более активно, чем ацетилен. Действительно, в воде при температуре 55° в присутствии щелочи тиофен образуется из диацетилена и КагЗ с выходом 37% (табл. 22). [c.61]

    Реакции металлирования и реакции замены галоида на металл в фуране, пирроле и тиофене можно рассматривать как нуклеофильное замещение водорода или галоида соответственно, и следовательно, они должны быть обсуждены в этом разделе. Метал-лирование фурана [102] и тиофена протекает при обработке этих гетероциклов я-бутиллитием. В результате реакции с высокими выходами образуются 2-фуриллитий и 2-тиениллитий соответственно. Механизм реакции включает, по-видимому, четырехцентровый [c.124]

    Виниловые эфиры и амины имеют малую склонность к сохранению структуры так, при действии электрофильного агента первоначально образующийся продукт реакщ1и взаимодействует с нуклеофильной группой и образует продукт присоединения (пример 207->210). Тиофен и пнррол имеют высокую степень ароматичности (энергия сопряжения 31 ккал1моль, как измерено по теплотам сгорания) и, следовательно, при взаимодействии с электрофильным агентом первоначальный продукт реакции отщепляет протон и в результате ароматизации дает продукт замещения (пример 211 214). Фуран имеет менее ароматический характер (энергия сопряжения 23 ккал/моль) и одинаково часто присоединяет реагент и взаимодействует по схеме замещения. Ароматичность бензольного ядра ослаблена в 3,4-бензопроизводных (215), которые нестойки и обычно наряду с замещением вступают в реакцию присоединения, тогда как 2,3-бензопроизводные (216) являются устойчиво ароматическими соединениями. Однако 3-замещенные индолы иногда взаимодействуют с электрофильными агентами в положении 3 с образованием индоленннов (217) (ср. стр. 173). [c.165]

    Другие реакции с нуклеофильными агентами. Тиофен и фуран с натрийалкилами образуют 2-натрийзамещенные, которые с двуокисью углерода дают соли соответствующих карбоновых кислот. [c.182]

    Наличие дополнительных атомов азота в коЛьце оказывает большое влияние на свойства щ1клической системы по сравнению с теми, которые были обсуждены в гл. 6. Дополнительные атомы азота привносят в систему свободные пары электронов, которые не включаются в т-электронную систему молекулы и обусловливают предпочтительное направление атаки для протонов и других электрофилов. Дополнительные атомы азота также способствуют понижению энергетических уровней т-орбиталей (сравните бензол и пиридин, гл. 2, рис. 2.2), поэтому эти гетерощ1Клы менее т-элек-троноизбыточные . В результате электрофильная атака по атомам углерода в этих молекулах затруднена по сравнению с пирролом, фураном или тиофеном. Кроме того, дополнительные атомы азота, обладая отрицательным индуктивным эффектом, способны стабилизировать отрицательно заряженные интермедиаты. Так, нуклеофильное присоединение — элиминирование (рис. 8.1, а) и депротонирование метильных заместителей (рис. 8.1, б) представляют со- [c.341]


    Студент, изучающий органическую химию, очень рано знакомится со следующими фактами алкены взаимодействуют с электрофилами (по типу реакции присоединения) арены (бензол, нафталин и т. д.) также взаимодействуют с электрофилами по механизму присоединения — элиминирования. Несколько позже ему становится известно, что гетероароматические соединения (фуран, тиофен, пиридин, индол и т. д.) реагируют с электрофилами почти так же, как арены. Из сказанного следует, что арены и гетероарены могут рассматриваться как нуклеофильные углеродные частицы. [c.48]

    Может ли тиофен (это вещество, как и пиридин, является гетероароматическим соединением) вступать в реакции нуклеофильного замещения  [c.89]

    Реакцию ведут в трифтороуксусной кислоте, т. е. в ней участвует катион хиназолиния (можно брать заведомый гидрохлорид хиназолина). Реакция часто проходит уже при комнатной температуре образующийся аддукт (90) можно выделить препаративно. При окислении феррицианидом калия он превращается в 4-замещенный хиназолин. В качестве нуклеофильных агентов использовали фенол, анизол, мезитилен, нафталин, антрацен, пиррол, индол, тиофен и др. Наряду с хиназолином в эту реакцию вступают пиразин, пиридазин, пиримидин, 4- и [c.257]

    Это представление, вообще говоря, созвучное современной теории ароматичности, сегодня уже не охватывает собой всех особенностей химического поведения тиофена, поскольку оно не отражает способность тиофена вступать в реакции, обусловленные наличием в его молекуле атома серы, геометрию тиофенового цикла, являющуюся существенным фактором в некоторых превращениях производных тиофена и т. д. Между тем значение гетероатома в тиофене, как и в других гетероциклах, не ограничивается тем, что он дополняет я-электронную систему до ароматического секстета. Как известно, ему принадлежит важная роль в определении направленности замещения в кольце и, поскольку он составляет звено замкнутой цепи, его можно рассматривать как внутреннюю, неотъемлемую функцию. Именно наличие гетероатома создает возможность для наблюдения изомеризации мо-ноалкил- и арилзамещенных тиофена, происходящей в результате фотохимического процесса [2]. Тиофеновые соединения вступают в реакции ароматического замещения различных типов. Сравнительно большой материал имеется по нуклеофильному замещению (см., например, [3]). Описаны также реакции гемолитического замещения, в частности, алкилирование [4, 5], арилирование [6], тиилирование [7], ацилирование [8], высокотемпературное силилирование [9]. [c.6]

    Сравнение результатов расчета реакционной способности тиенотиофенов в я-электронном приближении по методу ППП [183] и с учетом всех валентных электронов [184] показывает, что они вполне удовлетворите.льно согласуются между собой. Следует, однако, отметить, что в расчетах по методу ППП существует определенный произвол в выборе расчетных параметров, особенно для тяжелых атомов (типа серы), что может иногда привести к расхождению в оценке реакционной способности, полученной расчетным (в я-электронном приближении) и экспериментальным путем. Например, Кларк [183], используя полуэмпирический метод МО ППП ССП, на основе полученных значений энергии локализации рассчитал реакционную способность различных положений в тиенотиофенах I—III, тиофене и нафталине и привел следующий порядок понижения реакционной способности для электрофильного замещения — III > I II тиофен для нуклеофильного замещения — III II тиофен I для радикального замещения — III > тиофен II I. Тот же порядок изменения реакционной способности получен для случая электрофильного замещения и при кислотном дедейтерировании [228], хотя и несколько иной в реакциях ацетилирования, формилирования и хлорирования  [c.224]

    Разумеется, так обезличиваются только те гетероатомы, электронные пары которых входят в ароматический секстет (или, более обще, в группу 4п + 2), и это не относится ни ко второму гетероатому пятичленных циклов, ни даже к первому гетероатому шестичленных циклов. Двойные связи гетероциклов имеют в разной степени ароматический характер, иногда напоминая связи диеновых углеводородов, иногда — бензола. Полностью или частично гидрированные циклы, такие, как ди-или тетрагидропиридин, ди- и тетрагидрофуран и тиофен, гексагидропиридин (пиперидин) по своим функциональным проявлениям похожи на соответствующие алифатические соединения. Оставщиеся двойные связи имеют обычную активность, гетероатом проявляет наличие свободной пары электронов и нуклеофильно активен, как в жирных соединениях соответствующих функций. [c.253]


Смотреть страницы где упоминается термин Тиофен с нуклеофильным: [c.255]    [c.368]    [c.371]    [c.225]    [c.228]    [c.262]    [c.266]    [c.49]    [c.201]   
Основы химии гетероциклических соединений (1975) -- [ c.213 , c.214 , c.252 , c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеофильное замещение в ряду тиофена

Тиофен



© 2025 chem21.info Реклама на сайте