Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фураны электрофильное замещение

    Фуран, пиррол и тиофен вступают в реакции электрофильного замещения с большей легкостью, чем бензол, тогда как пиридин и хинолин вступают в эти реакции труднее бензола. По сравнительной легкости, с которой эти гетероциклические -соединения и бензол вступают в указанный тип реакций (нитрование, сульфирование, галоидирование),, их можно расположить в следующий ряд, в котором слева от бензола располагаются соединения, обладающие большей ароматичностью и легче, чем бензол, вступающие в эти реакции, а справа—соединения, вступающие в них труднее бензола  [c.56]


    Расположите по возрастанию легкости вступления в реакции электрофильного замещения следующие соединения а) пиррол 6) бензол в) тиофен г) фуран. [c.137]

    Таким образом, гетероциклические соединения, подобно бензолу и его производным, склонны в большей степени к реакциям замещения. По легкости, с которой фуран, пиррол и тиофен вступают в реакции электрофильного замещения, их можно расположить в ряд (сравнивая при этом с бензолом и шестичленными гетероциклами)  [c.355]

    Простейшие ароматические гетероциклы. Пятичленные гетероциклы с одним, гетероатомом. Относящиеся к этому типу ароматические соединения, например фуран, пиррол и тиофен, намного активнее бензола в реакциях электрофильного замещения (особенно фуран и пиррол). Как уже отмечалось в разд. 5.1, эти гетероциклы имеют дипольные моменты (0,7, 1,8 и 0,55 Д соответственно). [c.352]

    Пятичлеиные ароматические гетероциклические соединения, такие, как. фуран, тпофен п пиррол, галогепнруются, нитруются и сульфируются совершенно так же, как и другие ароматические соединения. Они, как правило, гораздо реакционноспособнее бензола и сходны по своей реакционной способности с фенолом и анилином (гл. 22 и 23) поэтому для электрофильного замещения в ряду гетероциклических соединений часто не требуются сильные катализаторы, как для замещения в бензоле. Так как и пиррол, и фуран разлагаются в присутствии протонных кислот, для них необходимы несколько-иные условия проведения обычных реакций. В реакции сульфирования в этих случаях источником 30,, вместо дымящей серной кислоты служит комплекс, образуем .1Й пиридином и 80 в качестве нитрующего агента можпо применить ацетилнитрат. [c.633]

    Поведение простейших пятичленных и шестичленных гетероциклических соединений, обладающих ароматическими свойствами—фурана, пиррола, тиофена и соответственно пиридина и хинолина, в реакции галоидирования, подобно их поведению в других реакциях электрофильного замещения (в реакциях нитрования и сульфирования — см. стр. 56 и 111) фуран, пиррол и тиофен галоидируются легче бензола, тогда как пиридин и хинолин галоидируются труднее бензола. [c.185]

    Охарактеризуйте отношение фурана, пиррола и тиофена к действию электрофильных реагентов. Приведите механизм реакции электрофильного замещения в общем виде. Сравните устойчивость карбкатионов (ст-комплексов), образующихся при атаке электрофила (Е+) в положения 2 и 3. Сделайте вывод о преимущественном направлении этих реакций. С какими соединениями бензольного ряда можно сравнить фуран, пиррол и тиофен по их способности вступать в реакции электрофильного замещения  [c.205]


    Чрезвычайно важное значение для синтеза различных производных пиррола, тиофена и фурана имеют реакции депротонирования. Фуран и тиофен депротонируются такими сильными основаниями, как -бутиллитий и диизопропиламид лития, и при этом образуется а-анион, поскольку атом водорода в этом положении обладает подвижностью вследствие индуктивного электроно-акцепторного влияния гетероатома. Полученный таким образом анион способен реагировать с самыми разнообразными электрофилами с образованием а-замещенных фуранов и тиофенов. Эта методология существенно расширяет возможность использования процессов электрофильного замещения в синтезе различных производных фуранов и тиофенов, поскольку позволяет получать исключительно а-замещенные соединения, а также использовать даже слабые электрофильные реагенты. Использование металлированных Ы-замещенных пирролов также обеспечивает ценный синтетический подход к различным а-за-мещенным пирролам. При отсутствии заместителя при атоме азота депротонирование пиррола приводит к пиррил-аниону, который обладает нуклеофильными свойствами, и при его взаимодействии с электрофильными реагентами образуются производные индола, замещенные по атому азота. [c.307]

    Химические свойства. Подобно бензолу фуран, пиррол и тиофен вступают в реакции электрофильного замещения. При этом замещается водород, находящийся в соседнем положении с гетероатомом (а-положение). Как правило, в этих случаях необходимы мягкие специфические реагенты, например  [c.312]

    Распределение я-электронной плотности в молекуле пиррола также неравномерно. Эта плотность выше в а (а )-положении. Поэтому при реакции электрофильного замещения, которая у пиррола протекает значительно легче, чем у бензола, реагенты становятся в эти положения. По реакционной способности пиррол находится между фураном и тиофеном  [c.362]

    Простейшие пятичленные гетероциклические соединения, обладаюш,ие ароматическими свойствами—фуран, пиррол и тиофен,—сульфируются легче бензола, тогда как шестичленные гетероциклы—пиридин и хинолин—сульфируются труднее бензола, т. е. относятся к этой реакции электрофильного замещения так же, как и к рассмотренной выше (стр. 56—62) реакции нитрования. [c.111]

    Приведенные ниже реакции электрофильного замещения характерны не только для самого бензола, но и для его моно- и дизамещенных, конденсированных ароматических систем (нафталин, антрацен), а также для гетероароматических соединений (фуран, пиррол, тиофен, пиридин и др.). [c.355]

    Физические свойства Фуран, тиофен, пиррол представляют собой жидкости, плохо растворимые в воде Химические свойства Подобно бензолу фуран, пир рол и тиофен вступают в реакции электрофильного замещения При этом замещается водород, находящийся в соседнем положении с гетероатомом (а-положение) Как правило, в этих случаях необходимы мягкие специфические реагенты, например [c.312]

    Различие в энергиях основного состояния бензола и гипотетического неароматического циклогекса-1,3,5-триена соответствует степени стабилизации, определяемой специфицеским циклическим взаимодействием шести п-элек-тронов. Такое различие в энергии называется энергией ароматического резонанса. Очевидно, что количественное выражение энергии резонанса зависит от оценки энергии соответствующей неароматической структуры, поэтому (хотя и не только) различные значения энергии резонанса могут быть рассчитаны для различных гетероароматических систем. Однако следует заметить, что абсолютное значение энергии резонанса не такая уж важная характеристика, гораздо большее значение имеет ее относительное значение. С уверенностью можно утверждать, что резонансная энергия бициклических ароматических соединений, таких, как нафталин, значительно меньше, чем сумма энергий резонанса двух соответствующих моноциклических систем. Это означает, что в результате образования интермедиата (например, при реакции электрофильного замещения, разд. 2.2.2) потеря в энергии стабилизации меньше для бициклических систем, поскольку одно бензольное кольцо остается незатронутым в ходе реакции. Энергия резонанса пиридина того же порядка, что и энергия резонанса бензола, а энергия резонанса тиофена меньше по значению, чем энергия резонанса бензола. При переходе к пирролу и, наконец, к фурану наблюдается дополнительное уменьшение энергии стабилизации. Истинные значения энергии стабилизации для этих гетероциклических ароматических соединений варьируются в зависимости от сделанных предположений относительно энергии соответствующих им неароматиче-ских систем относительные энергии резонанса для бензола, пиридина, тиофена, пиррола и фурана равны 150, 117, 122, 90 и 68 кДж/моль соответственно. [c.17]

    Фуран, пиррол и тиофен в реакции электрофильного замещения вступают легче, чем бензол, однако фуран и пиррол (но не тиофен) для проведения этих реакций требуют использования специальных модифицированных электрофильных реагентов (ацетилнитрат, пиридинсульфотриоксид и др.). Объясните этот факт. Приведите реакции фурана и пиррола с указанными реагентами. [c.205]


    С иодом фуран не реагирует. Иодирование удается осуществить только путем замещения карбоксильной группы. Эти реакции довольно часто наблюдаются при электрофильном замещении фенолкарбоновых кислот. [c.269]

    Электрофильное замещение в пирроле, фуране и тиофене. Реакционная способность и ориентация [c.1019]

    Фуранкарбоновые кислоты легко вступают в реакции электрофильного замещения. Фуран-З-карбоновые кислоты, как и 3-ацил-фураны, замещаются по пятому положению. Реакции фуран-2-кар- [c.275]

    Поэтому реакции электрофильного замещения в фуране, которые идут так же легко, как и в фенолах вследствие наличия избыточного (-)-заряда в кольце, можно проводить в нейтральной и щелочной среде. Так, даже Вгг и Ь в спиртовых растворах приводят к полному замещению атомов водорода  [c.678]

    Если для производных бензола и электроноизбыточных гетероциклических соединений (пиррол, фуран и т. д.) характерны реакции электрофильного замещения, то для производных пиридина наиболее характерны реакции с нуклеофильными реагентами. [c.112]

    Пиррол, фуран, тиофен и их производные относятся к богатым электронами , так называемым я-избыточным системам (см. 2.3.2). Для них характерна ббльшая легкость протекания реакций электрофильного замещения по сравнению с бензолом. Более реакционноспособными являются а-положения. [c.146]

    Для 1,2- и 1,3-азолов характерны свойства как пятичленных электроноизбыточных гетероциклических соединений, так и гетероциклических соединений, содержащих иминный атом азота. Присутствие иминного фрагмента в азолах понижает их активность в реакциях электрофильного замещения по атому углерода как в результате индуктивного, так и мезомерного влияния. Кроме того, присутствие основного атома азота способствует образованию солей азолов в кислых средах. Например, в зависимости от кислотности среды нитрование пиразола может проходить либо через предварительное образование пиразолиевого катиона [30], либо с участием свободного основания [31]. Изучение протонного обмена, катализируемого кислотой, обнаружило следующий порядок реакционной способности пиразол > изоксазол > изотиазол. Среди пятичленных гетероциклических соединений с одним гетероатомом порядок активности в реакциях протонного обмена следующий пиррол > фуран > тиофен, причем каждое из этих соединений более активно в таких превращениях, чем гетероциклические соединения, содержащие иминный атом азота. При этом азолы более активны в реакциях протонного обмена, чем бензол, парциальные факторы скоростей для реакций по положению 4 пиразола, изоксазола и изотиазола равны 6,3 10 , 2,0 10 и 4,0 10 соответственно. Нитрование тиофена проходит в 3 10 раз быстрее, чем нитрование 4-метилтиазола [32]. Относительная активность тиофенового и тиа-зольного циклов в реакциях нитрования иллюстрируется приведенной ниже реакцией [33]  [c.39]

    Ввиду того, что р-электроны атома кислорода в фуране в меньшей степени, чем р-электроны атомов азота и серы в пирроле и тиофене, сопряжены с л-электронами диеновой системы, некоторые из реакций электрофильного замещения протекают своеобразно, через стадию промежуточного образовайия продукта 1,4-присоединения, например  [c.512]

    Такие гетероциклические соединения, как фуран, тиофен и пиррол, вступают в реакции электрофильного замещения с большей легкостью, чем бензол. Фуран и его производные нитруются смесью азотной кислоты с уксусным ангидридом, образуя продукты присоединения ионов N0 и СНдСОО в положения 2,5 (а,а -нитроацетаты). Нитроацетаты при действии пиридина легко отщепляют уксусную кислоту, превращаясь в а-нитрофуран или его производные. [c.91]

    Свободный пиррол в отличие от тиофена мало устойчив, так как имеет высокую склонность к окислению и осмолению. Это связарю с невысокой стабильностью ароматических я-орбиталей, с очень большой электронной шютностью в циюш, в результате чего пиррол и его алкил, ОН- и ЫНг-производные можно отнести к электронно-избыточным я-системам, аналогично циклопентадиенил-аниону С Н . По этой причине все реакции электрофильного замещения Н-атома в пирроле проводятся в тех же мягких условиях, что и с фураном. Пиррол заметно структурирован за счет водородных связей, имеет высокую = 130 °С и слабо растворим в воде (массовая доля 5%). В органической химии, особенно в химии порфиринов, широко используются простые и сложные (макроциклические) производные пиррола. [c.684]

    Однако и гетероатомы, входящие в состав цикла, оказывают влияние на свойства гетероциклических соединений. В некоторых гетероциклах в отличие от ароматических соединений наблюдается неравномерное распределение я-электронной плотности в молекуле. Например, в пятичленных гетероциклах (в фуране, тиофене и пирроле) плотность смещена от гетероатома в сторону кольца и будет наибольшей в а-положениях. Это приводит к тому, что в этих положениях наиболее легко идет процесс электрофильного замещения (5е)  [c.355]

    Пяти- и щестичленные гетероциклические соединения содержат замкнутую систему из шести л-электронов. Для пятичленных гетероциклов эта система состоит из четырех я-электронов двух двойных связей цикла и однбй электронной пары гетероатома (О, N. 8). В шестичленных гетероциклах в сопряжении участвуют шесть л-электронов трех двойных связей. Поэтому гетероциклические соединения, подобно бензолу и его производным, склонны в большей степени к реакциям замещения. По легкости, с которой фуран, тиофен, пиррол и пиридин вступают в реакции электрофильного замещения, их можно расположить в ряд (сравнивая с бензолом)  [c.107]

    Напищите уравнения реакций электрофильного замещения, если взаимодействуют 1) фуран и хлорид ртути (П), 2) пиррол и л-бромфенилдиазонийхлорид, [c.221]

    Высокая ароматичность в химическом понимании, т. е. склонность к реакциям электрофильного замещения в ядрк гетероциклических аналогов циклопентадиенильного аниона (XVII) (фуран, тиофен, пиррол, селенофен, теллурофен), объясняется тем, что 2р.- [c.268]

    В реаедиях электрофильного замещения 1,3-азолов по углеродным атомам далеко не все еще ясно. Несомненно, однако, что по реакционноспособности 1,3-азолы занимают промежуточное положение между пиридином и шестичленными гетероциклами — пирролом, фураном и тиофеном. Не описано, например, ни одного случая С-ацилирования 1,3-азолов (даже в присутствии кислот Льюиса), тогда как нитрование имидазола и 4-метилтиазола идет без затруднений. [c.333]

    Фуран проявляет высокую реакционную способность в отно-иенни электрофилов. Фураны, содержащие электронодонорные группы, неустойчивы к действию минеральных кислот, при этом ядет протонирование по одному из а-положений [10], которое может сопровождаться раскрытием кольца (см. разд. 18.4.9) или полимеризацией фураны с электроноакцепторными заместителями более стабильны. Вследствие такой чувствительности к действию кислот условия проведения электрофильного замещения необходимо тщательно контролировать. Механизм реакции часто не столь прост, как в случаях электрофильного замещения, характерных для бензоидных соединений, и может быт12 осложнен 1,2- и 1,4-присоединением к диеновой системе. [c.118]

    Другой путь использования принципа линейности соотношения свободных энергий заключается в изучении влияния заместителей на скорость электрофильного замещения. Для семи 2-замещенных фуранов была получена гамметовская зависимость между скоростями трифторацетилирования в положение 5 и константами заместителей о+, известными для производных бензола [14]. Фурановый цикл оказался более чувствительным к влиянию заместителей, чем тиофеновый полученные для этой реакции значения р соответственно равны —10,7 и —7,4. Аналогичная обработка данных [c.119]

    Реакции электрофильного ароматического замещения гораздо чаще использую-ся в случае пятичленных электроноизбыточных ароматических соединений [12]. Такие соединения, как пиррол, тиофен и фуран, с чрезвычайной легкостью вступают в реакции электрофильного замещения, причем замещение проходит по любому положению цикла, однако предпочтительнее по положению, ближайшему к гетероатому, т. е. по а-положениям. Такие реакции облегчаются электронодонорными свойствами гетероатома, поэтому пиррол более реакционноспособен, чем фуран, который в свою очередь более реакционноспособен, чем тиофен. Количественное сравнение [13] реакционной способности этих гетероциклических соединений зависит от электрофильного реагента например, соотношение скоростей трифторацетилирования пиррола, тиофена и фурана равно, 5 10 1,5 10 1 [14], формилирование фурана проходит в 12 раз быстрее, чем тиофена [15], а ацилирование — в 9,3 раза [16]. Парциальные факторы скоростей протонного обмена по положениям аир 1-метилпиррола [17] равны соответственно 3,9 10 и 2,0-10 °, в случае фурана — 1,6 10 и 3,2 10 , в случае тиофена — 3,9 10 и 1,0-105 [18]. Соотношение скорости замещения по а- и р-положениям тиофена существенно различаются (от 100 1 до 1000 1) в зависимости от электрофильного агента [19]. Относительная реакционная спо- [c.37]

    Вследствие высокой стабильности тиофенов в их реакциях электрофильного замещения могут быть успешно использованы комбинащ1и ряда реагентов с сильными кислотами, обычно приводящие к кислотно-катализируемому разложению и полимеризации фуранов и пирролов. [c.353]

    Дигидроксифуран не удается обнаружить в таугомерном равновесии между моноенольной и дикарбонильной формами диметиловый эфир ведет себя как обычный фуран, легко подвергается электрофильному замещению по а-поло-жению(ям) [121], а также вступает в реакцию Дильса-Альдера [122]. [c.393]

    Электрофильное замещение в бензо[й] тиофенах и бензо[й]фуранах проходит гораздо менее региоселективно, чем в индоле (особенно это касается селективности атаки по положению 3), и атомы углерода гетероцикла обладают лишь не- [c.479]

    Азолы по легкости, с которой они вступают в реакции электрофильного замещения, занимают промежуточное положение между пиридинами, с одной стороны, и пирролами, тиофенами и фуранами, с другой наличие элекгроноак-цепторной иминной группы оказывает влияние на пятичленные ароматические гетероциклы такое же, как и в шестичленных ароматических структурах (т. е. такое же, как при сравнении бензола с пиридином, гл. 4). Порядок реакционной способности пиррол > фуран > тиофен справедлив и для азолов, хотя наличие основного атома азота усложняет такое сравнение. Региоориентация электрофильной атаки становится более ясной при сравнении характера различных положений цикла активированного в пятичленных циклах и дезактивированного подобно а- и у-положениям в пиридине. [c.504]

    В реакциях электрофильного замещения тиофен меиее акти-), чем пиррол и фуран, и гораздо более стоек к действию мине-пьны кислот. Так, тиофен сульфируется непосредственно сер-я кислотой с образованием тиофеи-2-сульфокислоты легко груется, давая 2-нитротиофен ацилируется в присутствии лот Льюиса, что ведет к получению кетонов тиофенового да (а-тненилкетонов, см. 5.3.3). [c.285]


Смотреть страницы где упоминается термин Фураны электрофильное замещение: [c.510]    [c.324]    [c.121]    [c.122]    [c.236]    [c.228]    [c.677]    [c.532]    [c.73]    [c.283]   
Основы химии гетероциклических соединений (1975) -- [ c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение электрофильное

Фуран

Электрофильное замещение в ряду фурана

Электрофильность



© 2025 chem21.info Реклама на сайте