Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разгонка определение

Рис. 3.3. График для нахождения поправки при определении среднемассовой (ср.т, среднемольной <ср, м. и средней ср температур по среднеобъемной температуре 1ср о (цифры на кривых) в зависимости от наклона кривой разгонки (по ГОСТ) 6э Рис. 3.3. График для нахождения поправки при определении среднемассовой (ср.т, среднемольной <ср, м. и <a href="/info/128624">средней</a> ср температур по <a href="/info/393122">среднеобъемной температуре</a> 1ср о (цифры на кривых) в зависимости от наклона <a href="/info/13768">кривой разгонки</a> (по ГОСТ) 6э

    Стандартная разгонка является наиболее быстрым и дешевым методом определения фракционного состава нефтяных фракций, поэтому она получила широкое распространение в практике нефтепереработки. Для определения фракционного состава нефти стандартную разгонку используют редко. Фракционный состав масляных фракций обычно определяется разгонкой по Богданову в кол- [c.24]

    В связи с внедрением в промышленности новых процессов переработки, а также изменением требований к ассортименту и качеству нефтепродуктов предлагается пересмотреть программу исследования нефтей с целью расширения и уточнения ее [21], Расширенной программой исследования нефтей предусматривается определение кривых разгонки нефти, устанавливающих зависимость выхода фракций от температуры кипения и определяющих их качество давления насыщенных паров содержания серы асфальтенов смол силикагелевых парафинов кислотного числа коксуемости зольности элементного состава основных эксплуатационных свойств топливных фракций (бензинов, керосинов, дизельного топлива) группового углеводородного состава узких бензиновых фракций выхода сырья для каталитического крекинга, его состава и содержания в нем примесей, дезактивирующих катализатор потенциального содержания дистиллятных и остаточных масел качества и выхода остатка. [c.35]

    Фракционная разгонка нефти с определением истинных температур выкипания до 200°С проводится при атмосферном давлении и от 200 до 480—500 °С (в пересчете на атмосферное давление) — [c.20]

    Стандартом предусматривается определение температур начала кипения (н. к.), температур выкипания 10, 20, 30, 50, 90 и 98% (об.) и определение массы остатка. При проведении параллельных опытов допускается расхождение температуры начала кипения 4°С и для конечных и промежуточных точек фракционной разгонки 2°С. [c.24]

    Сложные углеводородные системы. Нефтяные фракции представляют собой смеси, состоящие из столь большого числа отдельных соединений, что их идентификация для определения состава системы и вообще для инженерных расчетов практически не имеет смысла. Для описания свойств этих систем, называемых сложными или непрерывными смесями, используются так называемые кривые разгонок, из которых наиболее важными являются кривые истинных температур кипения (ИТК). Если представить, что компоненты, составляющие сложную смесь, отгоняются из нее под постоянным давлением в строгой последовательности, отвечающей их точкам кипения t, непрерывно возрастающим с долей отгона е, то график зависимости t — ей носит название кривой истинных температур кипения. Каждая точка на непрерывной кривой ИТК представляет температуру кипения гипотетического точечного компонента, выкипающего из исходной смеси при данной доле отгона, и поэтому может рассматриваться еще и как точка кривой давления насыщенного пара данного компонента, отвечающая при этой температуре тому постоянному давлению, при котором построена линия ИТК. [c.103]


    При разгонке естественного газа на его отдельные компоненты в чистоте каждого из них убеждаются методом сожжения. Такая проверка осо- бенно необходима для метановой фракции, так как вместе с метаном при разгонке отходят негорючие газы, азот и гелий, а такн е кислород, ес.ли они содержатся в газе. Сожжение отдельных фракций и последующее поглощение производят в обычных газовых пипетках, присоединенных непосредственно к аппарату для разгонки определение же отдельных комнонентов смеси производят общими методами газового анализа, как указано выше. [c.123]

    Если определять смачивающую способность таких солей сульфокислот с учетом действия всегда находящейся в соли сульфокислот поваренной соли и наносить значения концентрации в г/л как функцию числа углеродных атомов или как ф/ункцию температурных пределов разгонки исходных углеводородов, то получается кривая, изображен-на5 на рис. 71. Эта кривая показывает, что смачивающая способность сначала возрастает с ростом величины молекулы, затем при определенной величине молекулы достигает своего максимума и после этого снопа падает. [c.410]

    Стандартная разгонка, характеризующаяся сравнительной конструктивной простотой и непродолжительным временем выполнения, используется для определения эксплуатационных свойств нефтепродуктов и для контроля качества продуктов переработки нефти. Кроме того, данные стандартной разгонки часто являются единственным источником информации о фракционном составе нефтепродуктов. В то же время довольно трудоемкая разгонка по ИТК необходима для составления материального баланса процесса и проведения технологического расчета перегонки и ректификации. [c.25]

    Кривые ОИ занимают вполне определенное положение относительно кривых ИТК и стандартной разгонки (рис. 1-22). Поскольку процесс однократной перегонки является наименее эффективным процессом разделения, кривые ОИ имеют минимальный угол наклона, т. е. Кривые ОИ, полученные при ат- [c.57]

    Экспериментальное определение доли отгона и состава образовавшихся фаз при однократном испарении нефтяных смесей является длительной и дорогой операцией. В то же время описанные выше аналитические методы расчета достаточно трудоемки и требуют обязательного применения ЭВМ. Кроме того, отсутствие во многих случаях полных данных по углеводородному составу нефтяных смесей и особенно нефтяных остатков, а также условность дискретизации сложных нефтяных смесей приводит к тому, что более надежным становится зачастую использование эмпирических методов расчета однократной перегонки по данным истиной или стандартной разгонки. Характерное положение кривых фракционного состава и кривых ОИ обеспечивает при этом достаточно высокую точность определения координат точек кривой ОИ на основе эмпирических методов расчета. [c.66]

    Для определения выхода бензина проводится разгонка дестиллата на специальном аппарате. [c.167]

    Перегонять индивидуальные химические вещества можно в любом аппарате, так как результаты перегонки определяются не конструкцией аппарата, а постоянной температурой кипения этих однородных жидкостей. При разгонке же нефтепродуктов, кипящих в широких температурных интервалах, конструкция аппарата и способ разгонки существенно влияют на результаты определения. Поэтому все нефтепродукты разгоняют в строго стандартных условиях, в специальных аппаратах, видоизменяемых в зависимости от характера испытуемого нефтепродукта (табл. 34). [c.194]

    Испаряемость топлива в определенной степени зависит от его молекулярной массы Мт, которая функционально связана с плотностью и средней температурой разгонки топлива 4р (рис. 3.5). [c.103]

    В ранних работах по изомеризации парафинов применялся лишь один метод анализа, основывавшийся на тщательной фракционной разгонке продуктов изомеризации и определении их физических констант. Циклопарафины представляли специальный случай, где анализ можно было основывать на избирательной дегидрогенизации алкилцикло-гексанов в соответствующие ароматические углеводороды. За последние годы развитие методов инфракрасной спектроскопии и масс-спектро-скопии для полного анализа сложных смесей изомеров оказало необходимую помощь в изучении реакции изомеризации. [c.15]

    Смеси при разделении дают чистый компонент и азеотропную смесь. Прекращение процесса ректификации в точках экстремума объясняется совпадением состава жидкости с составом пара при определенном соотношении компонентов, вследствие чего движущая сила разгонки [c.200]

    Разгонка по К. Энглеру практикуется обычно лишь до температуры 300° С, например, для определения фракционного состава бензина и керосина, для более же высококипящих фракций применяется чаще разгонка в вакууме (табл. 16). [c.64]

    Изложенный выше метод определения выходов товарных фракций по кривым разгонки нефтей является приближенным. Точность метода зависит от степени совпадения четкости ректификации в лабораторных и в заводских условиях, от того, насколько кривые разгонки ближе подходят к прямым линиям, насколько узка отбираемая фракция и как точно физико-химические свойства подчиняются правилу аддитивности. [c.149]


    В комплексе квалификационных методов для непосредственной характеристики испаряемости остаточных топлив предусмотрено определение их фракционного состава. Испытание проводят по методике, описанной в гл. 6. Ввиду того что остаточные топлива по сравнению с дистиллятны-ми в целом являются более высококипящими, разгонку проводят при относительно меньшем остаточном давлении (0,066-0,133 вместо 1,066-1,33 кПа, или 0,5-1,0 вместо 8-10 мм рт. ст.). Номограмма для приведения температур выкипания фракций к нормальному давлению приведена в гл. 6 (см. рис. 76). [c.183]

    Разгонку дистиллята проводят для определения выхода продуктов, выкипающих до 200° С. Колбу с дистиллятом подсоединяют к колонке, а последнюю присоединяют к охлаждаемому льдом приемнику. Скорость перегонки следует отрегулировать таким образом, чтобы всю разгонку провести [c.159]

    В легком масле определяется содержание бензола, толуола и ксилолов, вместе с которыми оиределяется и этилбензол. Как и в случае смолы, более детальному исследованию подвергаются более уз1 ие фракции. Большинство заводов, особенно крупных, ведут фракционную очистку легкого масла серной Кислотой, чтобы избежать перерасхода кислоты на самые легкие и промежуточные фракции поэтому определение расхода серной кислоты на очистку суммарного легкого масла в большинстве случаев не дает интересной для контроля производства цифры. Научное же исследование предполагает такую очистку хотя бы для того, чтобы освободиться от некоторого числа непредельных индивидов, затрудняющих фракционировку — и иметь больше материала для разгонки головных фракций, задерживающих бензол.  [c.400]

    Переработка первоначально от нефти отделяют сопутствующие вещества (песок, воду) и газообразные алканы. Очищенную нефть нагревают в трубчатых печах и подвергают разгонке (или вакуумной перегонке) на фракции с определенными пределами температур кипения. [c.255]

    Постепенную перегонку можно проводить при постоянной температуре, или давлении. В последнем случае температура жидкости в кубе будет непрерывно повышаться по мере утяжеления остатка. Постепенная перегонка — малоэффективный процесс разделения смесей, поэтому он применяется только для концентрирования компонентов из ширококипящих смесей в дистилляте либо в кубовом остатке. В настоящее время постепенная перегонка широко применяется при определении фракционного состава нефтяных смесей, например при стандартной разгонке. Отметим такл<е, что зaкoнoмepнo tям постепенной перегонки соответствует испарение нефтепродуктов в резервуарах при их хранении. [c.54]

    Так как время, потребное для разгонки определенного количества продукта, прямо пропорционально флегмовому числу, то кривые, аналогичные кривым рис. 56, дают зависимость между необходимой продолжительностью и результатами разгонки. На рис. 56, Г показана зависимость среднего состава первых 40% дестиллята от флегмового числа для различных типических случаев периодической ректификации. Зависимости такого вида представляют большой практический интерес доля загрузки, которая может быть отобрана, и чистота полученного отгона определяют выход в разгонке флегмовое число непосредственно связано с продолжительностью разгонки и потребным количеством тепла и охлаждающей воды. Полное исследование должно, конечно включать в себя также выяснение экономических факторов. [c.135]

    Как известно, ректификация в периодическом режиме заключается в разгонке определенного количества смеси, имеюшейся в кубе. При этом в зеотропных системах, если колонка достаточно эффективна, можно получить фракции, каждая из которых является практически очищенным веществом. В тех случаях, когда в системе имеется один или несколько азеотропов различного типа протекание процессов ректификации усложняется и зависит от характера фазового равновесия и состава разделяемой смеси. Влияние этих факторов известно довольно давно, в частности, даже термин азеотроп отражает особое поведение азеотропных смесей при перегонке и ректификации. Если учесть, что в производственной практике часто встречаются многокомпонентные азеотропные системы, становится понятным, почему при разработке ректификационных методов разделения и очистки веществ одним из первоочередных вопросов является вопрос об определении возможных результатов ректификации в конкретных системах с заданными физико-химическими свойствами. [c.168]

    К- п. д. аппарата представляет собой отношение числа теоретических тарелок к числу реальных та-релок при одинаковых границах разгонки. Определение его основано на сравнении числа реальных и теоретических тарелок. Если бы число теоретических тарелок находилось вне зависимости от вида кривой равновесия, то такое сравнение даваио бы возможность правильно оценить эффективность аппарата, однако вследствие неравноценности теоретических тарелок к. п. д. не может служить достаточно надежным мерилом эффективности, так как значение его имеет локальный характер. [c.116]

    Определенный практический интерес представляют также графические методы пересчета, использующие преобразования координат, выпрямляющие кривые стандартной разгонки и кривые ИТК например, с помощью вероятностной щкалы для доли отгона и простой шкалы для температур кипения [14] . Вероятностная шкала строится согласно кривой накопления вероятностей стандартного нормального распределения. Однако линейность кривых ИТК между 10 и 90% отгонов в указанных координатах выполняется только для легких нефтяных фракций, у которых температуры отгона 50% по ИТК и по стандартной разгонке практически совпадают. В связи с этим для выпрямления кривых стандартной разгонки и кривых ИТК предложено логарнфмически-нормальное распределение [12] в логарифмически-вероятностной координатной сетке. Логарифмический масштаб по оси абсцисс несколько скрадывает асимметричность кривых ИТК нефтяных фракций. В ука- [c.30]

    Задание 1 — кривая ИТК сырья задание 2 — требование на содержание примесей в продуктах задание 3 — условие подачи сырья в колонну подпрограмма 1— разбиение непрерывной исходной смеси на условные дискретные компоненты и переход от кривой ИТК к концентрациям компонентов подпрограмма 2 — расчет по линейной модели ориентировочных значений показателей четкости и температурных границ разделения и далее на их основе расчет величин отборов продуктов подпрограмма 3 — расчет доли отгона сырья на входе в колонну и определение их энтальпии подпрограмма 4 — поверочный расчет тарельчатой модели ректификационной колонны с определением состава продуктов, температуры и величины потоков пара и жидкости на тарелках подпрограмма 5 —ручное или машинное изменение параметров задачи, числа тарелок или режима работы колонны по дпpiD грамма 6 — уточнение содержания примесей в продуктах на основе обратного перехода от условных дискретных компонентов к непрерывной смеси подпрограмма 7 — расчет составов продуктов из концентраций в кривые ИТК и стандартной разгонки и вычисление дополнительных показателей качества нефтепродуктов. [c.89]

    Гвдрообессеривание нефтяных остатков — процесс сложный и дорогой. Однако он является радикальным методо] снижения содержания серы, металлов, асфальтенов. Наряду с этим значительно уменьшается коксуемость, вязкость, шютность. Облегчается фракционный состав. Непосредственно из гидрогенизата, после соответствующей стабилизащш, получается малосернистое котельное топливо. При разгонке гидрогенизата может быть получен определенный ассортимент продуктов. Компоненты бензина и дизельного топлива после дополнительного облагораживания вовлекаются в товарные продукты. Остаток выше 350 °С или вакуумный отгон от него может быть, использован в качестве сырья для каталитического крекинга или гидрокрекингу в ряде схем утяжеленный остаток используется как сырье для замедленного коксования в основном с целью получения высококачественного нефтяного кокса. [c.177]

    Колбы для разгонки нефтепродуктов Колбы для разгонки бензола, толуола и ксилола Вискозиметры Пинкевича Измерительные колбы к вискозиметру для определения условной вязкости Приемники — ловушки аппарата для количественного определения содержания воды Пикнометры Отстойнпки [c.36]

    Аппарат для определения фракционного состава АРН-2 (рис. 126) (по методу ГОСТ 11011—64) позволяет производить фракционирование нефти и нефтепродуктов при атмосферном давлении и в вакууме. Состоит из кубика с алектрообогревом 2, ректификационной колонны с насадкой из нихромовых проволочных спиралей 4, конденсатора-холодильника 6, двух приемников 5, вакуумного насоса 10, вспомогательных емкостей и измерительных приборов. Система кранов на трубках, соединяющих отдельные элементы аппарата, позволяет регулировать остаточное давление при вакуумной разгонке и выводить из системы отдельные отогнанные фракции. [c.74]

    Фракционный состав и испаряемость карбюраторных топлпв определяют стандартной разгонкой по ГОСТ 2177 — 59. При определении фракционного состава бензинов фиксируют температуры начала кипения (н. к.), выкипания 10, 50, 90 и 97,5 объемн. %ц конец кипения (к. к.). Температура выкипания 10 объемн. % топлива характеризует его пусковые свойства при низких температурах и склонность к образованию газовых пробок в системе подачи г )рю-чего. Эта температура равна 75—88° С для авиационных и 70—79 С [c.127]

    Данные приведены по [38]. В этой же статье приводится довольно употребительная номограмма для определения точных величин испаряемости с помощью кривых разгонки ASTM. [c.395]

    Для того чтобы увеличить количество паров топлива, необходимо подать в двигатель более богатую смесь, что достигается использованием дроссельного клапана. Запустить двигатель можно при соотношении воздух пар не выше, чем 20 1 оптимальные условия создаются, если соотношение равно 12 1. Само собой разумеется, что при какой-либо определенной температуре получить смеси такого состава возможно только в том случае, если бензин обладает определенной испаряемостью. Найти значение испаряемости можно, используя кривые лабораторной разгонки топлив [56]. Если в момент, когда двигатель глохнет , подается смесь воздуха и топлива с соотношением 1 1, то для того, чтобы получить смесь воздух — пар с соотношением 20 1, надо испарить топливо на 5%, а чтобы получить соотношение 12 1— на 8,3%. Если же в подаваемой смеси отношение воздух топливо равно 2 1, то топливо должно испариться соответственно на 10 и 16,7%. Для того чтобы установить, при какой температуре разгонки по ASTM будет достигнута требуемая степень испарения, можно воспользоваться имеющимися в литературе соотношениями между кривой разгопки в присутствии воздуха и кривой разгонки по ASTM эти же температуры приводятся в табл. VII1-2. [c.398]

    Одной из первых операций, связанных с определением фракционного состава нефти, является определение количества и состава ]застворенных в ней углеводородных газов. Для отделения последних сырую нефть в течение 3—4 ч подогревают до 150 —200° С в аппарате ИТК для разгонки нефти. Несконденсировавшиеся газы и легкую головную фракцию углеводородов отбирают раздельно газ т газометр, головную фракцию в колбу, погруженную в баню со льдом. По окончании перегонки подсчитывают выход этих продуктов в весовых процентах и затем перегоняют в аппарате низкотемпературной ректификации. [c.114]

    Аппарат Гро. зНИИ предназначен для определения пoтeнциaлIJ-ного содержания светлых (бензина, керосина п дизельного топлива) в нефти. Основными частями аппарата являются перегонный куб, ректификационная колонка с парциальным конденсатором, конден-сатор-холодильник и вакуумные приемники. На аппарате ГрозНИИ перегонку ведут при атмосферном давлении и под вакуумом. Через 15—20 мин после окончания атмосферной перегонки, когда температура жидкости в кубе снизится до 200° С, включают вакуум-насос и продолжают перегонку под вакуумом. Аппарат ГрозНИИ обладает относительно высокой фракционирующей способностью. Еще лучшие результаты в этом отношении достигаются в аппаратах ИТК и ЦИАТИМ-58, на базе которых Московским заводом КИП в 1962 г. разработан и налажен серийный выпуск стандартного аппарата АРН-2 для разгонки нефтей. [c.117]

    Фракционный состав дистиллятных топлив, содержащих фракции вакуумной разгонки нефти и выкипающих выше указанньк температурных пределов, определяют по методике, разработанной группой авторов. Сущность определения заключается в перегонке под вакуумом образца топлива на стеклянной лабораторной установке, показанной на рис. 75. Испытуемое топливо не должно содержать фракций, выкипающих ниже 160°С при анализе по ГОСТ 2177-82. [c.174]

    При использоваипи четкой ректификации удается разделить углеводородные фракции на индивидуальные соединения по истинным температурам кипения (ИТК) в порядке их возрастания. Данные по температурам кипения отдельных фракций, найденные по кривой ИТК, в отличие от данных разгонки по ГОСТ, являются величинами аддитивными и их можно использовать для определения фракционного состава смеси при компаундировании. [c.176]

    Все это особенно относится к данным, полученным лабораторной разгонкой. В это1г области в сущности можно сравнивать только данные одного и того же аналитика или лаборатории, и была бы в высшей степени желате.льна концентрация подобных определений в одних и тех же руках или в одном и том учреждении, постоянные методы которого н перманентность условий гарантировали бы ис1 лючение субъективных особенностей отдельных а йализов. [c.102]

    Методика анализа непредельной части газа разработана недостаточно. Фракщюнировапная разгонка сжиженного -газа является лучшим способом анализа, но требует специальной аппаратуры. Метод поглощения отдельных комионентов серной кислотой различных концентраций, описанный мной в 1925 ь (439) и разработанный затем Марковичем и Моор в 1930 г. (440), состоит в том, что определенный объем газа последовательно обрабатывается серной кислотой возрастающих концентраций. Изменение объема таза наблюдается каждые пять минут до тех пор, пока уменьшение объема газа не станет равномерным и незначительным. [c.388]


Смотреть страницы где упоминается термин Разгонка определение: [c.123]    [c.29]    [c.104]    [c.61]    [c.62]    [c.284]    [c.151]    [c.515]    [c.137]    [c.169]    [c.393]   
Руководство по лабораторной ректификации 1960 (1960) -- [ c.558 , c.560 , c.562 , c.565 ]




ПОИСК





Смотрите так же термины и статьи:

Бензин кривые разгонки для определения

Кривая разгонки определение

Определение содержания светлых нефтепродуктов в нефтях способом экспресс-разгонки

Определение фракционного состава нефтепродуктов разгонкой в стандартных аппаратах

Пропан определение методом разгонки

Разгонка

Разгонка молекулярная определение ВЭТТ

Разгонка молекулярная определение понятия

Разгонка определение понятия

Разгонка полунепрерывная, определение

Разгонка стабилизированная, определение понятия



© 2025 chem21.info Реклама на сайте