Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перегонка скорость

    Большая часть колонн атмосферной перегонки ранее построенных установок имеет запас производительности 30—50%. Вакуумные же колонны часто не обеспечивают проектную производительность, в них наблюдается большое налегание фракций и ряд других недостатков. Анализ работы большого количества ректификационных колонн и обобщения этих данных показали, что на погоноразделительную способность колонн оказывают существенное влияние следующие факторы тепловой режим паровых и жидкостных потоков, материальный баланс колонны, размеры сечений контактных элементов, конструкция и число тарелок, кратность орошения, способ ввода орошения в колонну, весовая и линейная скорость паров. [c.54]


    При определении кривых ИТК нефтяных смесей используют стандартные методы и аппаратуру. По ГОСТ 11011—64 для этих целей. рекомендуется аппарат АРН-2 с колонкой четкой ректификации диаметром 50 мм, высотой слоя проволочной насадки 1016 мм (рис. 1-4). Колонка имеет куб 2 с электрической печью 1 и конденсатор 5. Стандартом регламентируются условия перегонки скорость перегонки, остаточное давление, расход орошения и т. д., при соблюдении которых разделительная способность колонки соответствует 20 т. т. Аппарат АРН-2 обеспечивает достаточную четкость разделения нефтяных смесей, при этом интервал выкипания составляет 1—3°С. Очевидно, чем е фракционный состав отбираемых погонов, тем точнее получают истинные температуры кипения нефтяных смесей. Практически для интервала 3°С фракций получаются достаточно точные кривые истинных температур кипения. [c.20]

    Скорость перегонки. В отличие от простой перегонки, скорость которой ограничивается только возможной интенсивностью кипения жидкости и производительностью холодильника, скорость фракционной перегонки во многом определяет качество фракционирования. Превышение оптимальной скорости приводит к нарушению равновесия между флегмой и парами, и дефлегматор оказывается практически бесполезным. Кроме того, слишком высокая скорость испарения обычно вызывает захлебывание дефлегматора. При этом флегма не стекает спокойно по насадке, а скапливается в какой-либо ее части, пропуская пары в виде крупных пузырей. Разделения компонентов при таком режиме работы не происходит. Оптимальная интенсивность перегонки может быть различной в зависимости от типа насадки, размеров [c.145]

    Перегонка с однократным испарением — непрерывный процесс, протекающий в условиях равновесия между паровой и жидкой фазами. Непрерывность обеспечивается питанием системы сырьем постоянного состава о постоянной скоростью при непрерывном отводе образующихся паров и жидкого остатка. При перегонке нефти методом однократного испарения дистилляты отбирают при температурах 250, 275, 300, 325, 350, 375 и 400° С. Для нефтепродукта выбирают такой интервал перегонки, чтобы охватить температуры начала и конца кипения. Методика проведения перегонки путем однократного испарения заключается в следующем (рис. 61). Включают обогрев бани и подают воду в конденсатор-холодильник и холодильник. При температуре ниже заданной на 5—10° С приступают к подаче сырья. Когда установится заданная температура в бане (в жидкости и в парах), начинают учитывать количество подаваемого сырья и получаемых дистиллята и остатка. Продолжая подачу сырья, устанавливают следующее- заданное значение температуры в бане (в жидкости и в парах) и проводят соответствующие замеры II так до тех пор, пока пе проведут перегонку при всех заданных температурах. [c.120]


    Количество насыщенного водяного пара, определяемое по уравнению (11.40), необходимо для обеспечения суммарного давления паров равновесной системы, отвечающей данной температуре. В реальных условиях процесс перегонки ведется с конечной скоростью и поэтому жидкая и паровая фазы фактически не имеют достаточного времени для достижения полного равновесия. Если при этом учесть еще хотя и небольшую, но все же имеющуюся взаимную растворимость отгоняемого компонента с водой, а также и сопротивления массопередаче и теплопередаче в реальном процессе, то будет ясно, что парциальные давления компонентов в жидкой фазе будут несколько меньше, чем соответствующие теоретические значения. Эта особенность процесса учитывается обычно введением некоторого поправочного коэффициента насыщения В, приближенно определяемого выражением  [c.79]

    Схема аппарата АРН-2 показана на рис. 59. Основными составными частями его являются куб с электронагревательной печью и ректификационная колонка с конденсатором-холодильником и приемниками для дистиллятов. Ректификационная колонка диаметром 50 мм, высотой 1016 мм обладает погоноразделительной способностью, соответствующей 20 теоретическим тарелкам. Колонка заполнена насадкой в виде спиралек из нихромовой проволоки и снабжена электрообогревом. Узел конденсации допускает полную конденсацию паров и возврат части конденсата в качестве орошения в колонку. Стандартом унифицированы основные параметры перегонки скорость, остаточное давление, кратность орошения и др. Скорость перегонки должна соответствовать отбору 3—4 мл продукта в 1 мин. До 200° С перегонку ведут при атмосферном давлении, после чего давление снижают до 10 мм рт. ст., а по достижении температуры 320° С — до 1—2 мм рт. ст. [c.117]

    В конце прошлого столетия для смазывания узлов трения начали применять в качестве смазок минеральные (нефтяные) масла. Однако большие нагрузки и скорости, усложняющие условия работы узлов трения, потребовали создания и применения смазочных материалов более совершенных, чем масла, полученные перегонкой нефти. В настоящее время нефтяные масла совершенствуются введением в их состав различных присадок, что позволяет улучшать их свойства в желаемом направлении. [c.3]

    Методика определения. В измерительный цилиндр отбирают 100 мл бензола (толуола, ксилола), предварительно высушенного над безводным хлоридом кальция, прокаленным сульфатом натрия или едким натром в течение 20 мин., и вливают его в сухую колбу цилиндр, не высушивая, применяют в качестве приемника для конденсата. Пускают воду в холодильник, зажигают горелку и проводят перегонку. Скорость перегонки регулируют так, чтобы в течение всей перегонки в приемник стекало 4—5 мл конденсата в минуту. [c.66]

    Прибор собирают и начинают перегонку. Скорость перегонки должна быть такова, чтобы в ловушку падали 2—4 капли в секунду. Перегонку прекращают, когда объем воды в ловушке перестанет увеличиваться. Время перегонки не должно быть более 1 ч. Чтобы снять с холодиль- ,g прибор [c.41]

    При однократной перегонке высококипящих остатков в вакууме возможны осложнения, обусловленные использованием аппарата ОИ. Рекомендуется поддерживать постоянной скорость подачи сырья 400 мл/ч, для того чтобы обеспечить время пребывания жидкой фазы в испарителе от 19 до 70 мин в зависимости от доли отгона. Состояние равновесия следует считать достигнутым при совпадении температур жидкой и паровой фаз и температуры теплоносителя в бане с заданной точностью 1—2%. Максимальные колебания давления в системе не должны быть более 1,33 гПа, возможные изменения доли отгона составят при этом не более 1,5—1,7% (масс.). Надежность экспериментальных данных однократного испарения смесей следует косвенно проверять по непрерывному характеру изменения некоторых свойств паровой и жидкой фаз в зависимости от доли отгона, а именно плотности, молекулярной массы и коксового числа [58]. [c.59]

    Основными условиями непрерывного процесса являются постоянство составов сырья и образующихся из него равновесных фаз, а также неизменность скорости подачи сырья и отвода продуктов однократной перегонки. Тот же процесс однократной перегонки можно провести и адиабатически, т. е. без подвода и отвода тепла (рис. 11.2). Исходное сырье при температуре и давлении, обеспечивающих его, например, жидкое состоя- [c.64]

    Никаких мелкокристаллических игольчатых церезиновых структур, о которых упоминается в некоторых литературных источниках, авторами ни разу для данных фракций в указанных выше условиях ни для каких нефтей получено не было. Структуры с мелкими кристалликами, напоминающими по внешнему виду при рассмотрении в микроскопе штрихи или мнимые иголочки, наблюдались в этих фракциях только при загрязнении их более высококипящими фракциями вследствие нечеткой фракционировки при перегонке или при слишком высокой скорости охлаждения препаратов при микрофотографировании. [c.27]

    При перегонке колба с испытуемым нефтепродуктом должна обогреваться равномерно, так как колебания в подводе тепла приводят к ошибкам определения. Интенсивность нагрева регулируется в зависимости от скорости перегонки, которая регламентируется, например, количеством капель сконденсировавшегося погона в минуту. [c.195]

    Окисление топлив, получаемых прямой перегонкой нефти (ТС-1, Т-1), даже в присутствии инициаторов протекает с некоторым индукционным периодом тги, что свидетельствует о наличии в них достаточно больших концентраций естественных ингибиторов. После индукционного периода скорость окисления вначале остается постоянной, а затем начинает уменьшаться. Из этого можно сделать вывод, что в процессе окисления образуются продукты, обладающие тормозящим действием. [c.48]


    Как видно из приводимых ниже данных, скорости хорошо очищенных металлизирующихся золей значительно ниже, чем защищенных золей. Слишком большое количество окиси металла, обыкновенно присутствующее при первых перегонках, не только не повышает, но и снижает катафо-ретическую скорость и вместе с тем стабильность золей. Так, при первой перегонке часто наблюдается выпадение геля. Скорости чистых золей при последовательных перегонках меняются в сравнительно узких пределах (принимая во внимание, что после каждой перегонки мы имеем новый золь). Так, например, при ряде перегонок скорость катафореза коллоидного калия в эфире менялась следующим образом  [c.153]

    После того как вакуум-перегонка закончена, прежде всего прекращают нагревание. Затем трехходовым краном отсоединяют прибор от водоструйного или другого вакуум-насоса. Прибору дают некоторое время остыть, затем, осторожно поворачивая трехходовой кран, впускают в прибор воздух, внимательно наблюдая за ртутным манометром. Ртуть в нем должна переходить из колена в колено очень медленно. После заполнения закрытого колена мано.метра ртутью скорость впускания воздуха в прибор можно осторожно увеличить. Когда давление внутри прибора уравняется с наружным, отъединяют приемник, затем вынимают термометр из колбы Клайзена пли Арбузова и, наконец, снимают колбу. Подачу воды в холодильник прекращают еще до того, как приступят к разборке прибора. [c.134]

    Индекс активности катализатора оценивают по выходу бензина в объемных процентах с концом кипения 209° С. Для его отгонки из катализата используют ректификационную колонку с 5—10 теоретическими тарелка-ми. Скорость перегонки выдерживают ранной приблизительно 0,5 мл мин. [c.150]

    Электродвигатели, применяемые в качестве привода для йасо-сов, характеризуются следующими данными. Двигатели серии МА-35 мощность на валу 22, 30, 42, 60, 110, 145 кВт скорость вращения 2960 об/мин к.п.д. 87,5—92% созф 0,89—0,92. Двигатели серии М.А-36 изготовляют с короткозамкнутым и фазовым ротором мощность на валу для первых типов 60—145 кВт, а для вторых типов 55—90 кВт число оборотов в минуту 740, 985, 1480 к.п.д. 91—92% созф 0,88—0,89. Двигатели типа ТАГ маломощные (мощность на валу 0,42—3,5 кВт). Двигатели КО и К предназначены для работы в тяжелых условиях. Они широко распространены и изготовляются разных типоразмеров. В связи с укрупнением установок АВТ потребовалось создание высокопроизводительных насосов и приводов к ним. Так, для установок мощностью 3 и 6 млн. т/год используют сырьевые насосы производительностью до 500 и 1000 м /ч. Соответственно возрастает требуемая мощность электродвигателей. В табл. 37 приводится техническая характеристика насосов, применяемых на установке ЭЛОУ — АВТ со вторичной перегонкой бензина производительностью 3 млн. т/год сернистой нефти. [c.193]

    Для определения выхода бензина из первой ловушки берут 10 мл катализата и разгоняют его со скоростью 8 капель в 1 мин. Перегонку прекращают, когда температура паров достигнет 204 С. После этого колбу охлаждают до комнатной температуры и измеряют объем остатка. [c.155]

    Нагрев ведут так, чтобы первая капля парафина упала в вакуумный приемник через 15—20 мин после включения вакуумного насоса (перед началом перегонки отводную трубку колбы Богданова прогревают небольшим пламенем газовой горелки или спиртовки). Подогрев колбы во время перегонки регулируют так, чтобы перегонка велась равномерно со скоростью одна капля в секунду в течение всего определения. [c.464]

    Нагретое до 40 °С топливо (100 мл) заливают в приемник, нагретый также до 40 °С, а затем переливают в колбу Богданова. Для предотвращения переброса жидкости во время перегонки и излишнего пенообразования в колбу Богданова помещают 6-7 шаровых насадок и защитный конус (около отводной трубки) из металлической сетки. Соединяют колбу с вакуум-приемником, промежуточной и предохранительной склянками. С помощью вакуум-насоса создают и поддерживают остаточное давление в приемнике, равное 1,06-1,33 кПа (8-10 мм рт. ст.). Включают электрообогрев колбонагревателя и регулируют его так, чтобы первая капля топлива упала в вакуум-приемник через 10-20 мин, а в последующем скорость перегонки была в пределах 4-5 мл в минуту. Фиксируют температуры перегонки различных фракций и затем пересчитывают их на нормальное давление (рис. 76). [c.174]

    Доставленный контейнер / присоединяется к паропроводу пункта, загрузочный люк закрывается крышкой, соединенной трубопроводом с холодильником 2 и приемником-маслоотдели-телем 3, образуется перегонная установка (рис. 34). Посла этого открывается вентиль пара и производится прогрев сырья в течение 20—30 мин. С появлением струи дистиллята пускается вода в холодильник и начинается отсчет времени перегонки. Скорость гонки 500—600 л/ч регулируют подачей пара в аппарат, а температуру дистиллята — подачей воды в холодильник. Продолжительность перегонки 2 ч. Через каждые 30—40 мин сливается конденсат. По окончании перегонки прекращают подачу пара, сливают конденсат, отсоединяют от контейнера паропровод и верхнюю крышку загрузочного люка с отводящим [c.152]

    Основание для расчета от тарелки к тарелке. Сорель [108] впервые показал, что не следует ожидать при частичном орошении такой же степени разделения на терелке, как и при полном орошении, если даже все прочие условия будут одинаковыми. Его метод вычисления степени разделения при любом флег-мовом числе с помощью материального и теплового балансов был подробно разработан для тарельчатых колонн непрерывного действия. Эти же самые принципы приложимы к насадочным колоннам и периодической ректификации, но при тщательном анализе следует ввести еще два дополнительных фактора. В процессе периодической разгонки имеет место непрерывное изменение концентраций в любом месте колонны по мере того, как легколетучий компонент постепенно отгоняется. Это вызывает необходимость дополнительного введения в систему расчета, выработанную для непрерывной перегонки, скорости изменения переменных факторов во времени, что может привести к заметной разнице в уравнениях, в особенности если не пренебрегать задержкой (см. стр. 53). Кроме того, в насадочных колоннах постепенно изменяются и концентрации вдоль колонн, что требует применения дифференциального анализа. Это, естественно, является более сложным, чем аналогичные расчеты тарельчатых колонн, для которых может быть разработана теория последовательного расчета от тарелки к тарелке, отвечающего ступенчатому изменению составов. [c.45]

    Золи, полученные в приборах со шлифом, при первых двух перегонках движутся обычно очень медленно вследствие присутствия большого количества окислов, при дальнейших же перегонках скорость их быстро возрастает вследствие очистки золя от окислов и защиты его жирами смазки. К сожалению, определению скоростей в очень быстрых золях препятствует легкое образование депдритов. Как только легкая часть золя (в быстрых золях она движется очень быстро, проходя в минуту несколько сантиметров и в короткое время достигая электродов) доходит до анода, на нем начинается рост дендрита в виде нитки, в короткое время (менее минуты) прорастающей через весь сосуд. Как только она достигает катода, проскакивает искра, часть нити разрушается, затем нарастает вновь и т. д., и опыт приходится прекращать. [c.154]

    Если производится глубокая отгонка продукта, то в коКце процесса уровень его снижается. Помимо того, что при этом расстояние. от зеркала испарения до конденсатора увеличивается до 7 см, поверхность испарения уменьшается. Так как при работе с тяжелыми нефтвпродукта1Ми температура к концу перегонки близка к критическому значению, выше которого наступает заметдое разложение, то форсировать перегонку нельзя и к концу перегонки скорость перегонки замедляется. [c.98]

    Качество готового дистиллята контролируется по скорости перегонки, скорости поступления браги в дистилляционный аппарат непрерывного действия, крепости спирта, давлению пара, температуре и скорости дефлегмирования. На производительность дистилляционного аппарата и качество выпускаемого продукта в некоторой степени влияет площадь загрязнений внутренних поверхностей. Для уменьшения содержания в продукте сернистых соединений может понадобиться применение медных вставок. [c.356]

    Так как скорости этилировапия бензола и уже образовавшегося этилбензола прн.черио равны, то хотя еще в смеси имеется большое количество не вступившего в реакцию бензола, одновременно уже идет образование ди- и триэтилбензола. Чтобы избежать преимущественного образования нолизамещенных продуктов, в реакции алкилирования ограничиваются лишь частичным превращением, а затем отделяют друг от друга непрореагировавший бензол, моноэтил-бензол и полиэтилбензол посредством перегонки и ректификации. [c.228]

    На предприятиях планомерно проводятся работы по модернизации и замене морально устаревшего оборудования. Так,на многих печах установок термического крекинга, атмосферновакуумных трубчатках, установках селективной очистки масел, вторичной перегонки и других смонтированы безретурбендные спиралевидные змеевики. На ряде установок термокрекинга конвекционные змеевики с ретурбендами заменены безретурбенд-ными. На установках Л-35-11/1000 и АГФУ для увеличения скоростей продукта в змеевике подвергли модернизации печи, что позволило увеличить коэффициент теплопередачи через поверхности труб и прекратить их прогар н перегрев. [c.201]

    НЫМ является кольцевой режим движения, когда жидкость движется в виде пленки по стенке трубы, а пар — в середине трубопровода. Этот режим устанавливается при достаточно высокой скорости потока (Ргс>300) и высоком объемном па осодержании (р>0,95). Отметим, что для вакуумной перегонки мазута объемное паросо-держание потока в трубопроводе меняется в пределах р = 0,99— 0,998, а критерий Ргс = 250—2500. [c.180]

    Взятый нами для исследования бензин был получен из нефти (скв, 12) супсинского месторождения (Грузия). Из этого бензина была выделена фракция, выкипающая в пределах 122—150°. Полученная фракция была промыта 75%-ной серпой кислотой, затем 107о-ным раствором соды и дистиллированной водой. После высушивания над хлористым кальцием и перегонки в присутствии металлического натрия в ней были определены показатель лучепреломления, удельный вес и максимальная анилиновая точка. После удаления ароматических углеводородов было проведено каталитическое дегидрирование фракции на платинированном угле (22% платины), приготовленном по Н. Д. Зелинскому и М. Б Туровой-Поляк [16]. Активность катализатора была проверена проведением над ним циклогексана с объемной скоростью [c.87]

    С фракционным составом и давлением насыщенных паров бен — зинс>в связаны такие эксплуатационные характеристики двигателя, как воз ожность его пуска при низких температурах и склонность к обрс зованию паровых пробок в системе питания, приемистость автомобиля, скорость прогрева двигателя, расход горючего и другие пока — затели. Пусковые свойства бензинов улучшаются по мере облегчения их фракционного состава. Установлена следующая эмпирическая зависимость минимальной температуры воздуха при которой возможен запуск двигателя, от температуры 10 % —ной перегонки бензина и температуры начала его перегонки [c.109]

    Описанная последовательность очистки требует трех опера1Ц1Й ио экстракционной перегонке. Типичные анализы исходных продуктов и характеристика основных процессов разделения даны в табл. 19. Типичные величины скорости течения исходного продукта и растворителя даны в табл. 9. В табл. 20 приведено сравнение чисел теоретических тарелок, необходимых для основных процессов разделения при прямой фракциони-ровко и при экстракционной перегонке. На практике для таких операций по разделению компонентов применяются колонны со 100 теоретическими тарелками, причем растворитель подается в ко.тюнну на четвертую или пятую тарелку от верха. [c.116]

    Анализ процессов адсорбции с неподвижным или движущимся адсорбентом упрощается, если течение происходит настолько медленно, что во всех точках колонны достигается равновесие. Это, нообщс говоря, невозможно в дифференциальных процессах разделения, например при экстракции в системе жидкость — жидкость, абсорбции или перегонке. Когда скорость течения очень мала, наиболее эффективными оказываются адсорбционные методы, а эти методы становятся неэффективными. Интересно, что при проведении процесса в равновесных условиях рабочая линия совпадает с кривой равновесия. [c.154]

    Майр и соавторы [33] разработали метод анализа экспериментальных данных для равновесного процесса, при котором бинарная смесь пропускается через длинную колонну, заполненную неподвижным и первоначально сухим силикагелем. Вслед за этой смесью вводится жидкость, полностью вытесняющая оба компонента из адсорбента. По аналогии с перегонкой при полном орошении эти авторы рассчитали коэффициент разделения Л для различных систем. Они также расширили аналогию, вычислив высоты, эквивалентные одной теоретической тарелке. Такие высоты нельзя применять, если лимитирующил фактором процесса является скорость переноса. [c.156]

    Во ВНИИ НП был разработан способ сравнительной оценки активности катализаторов при малых степенях обессернванияИспытание катализаторов проводят с целью определения объемной скорости или фиктивного времени контакта сырья, при которых достигается степень гидрообессеривания, равная 70%. Полученные результаты сравнивают со значениями тех же факторов для эталонного катализатора. Испытания катализаторов проводят на лабораторной установке высокого давления, аналогичной установке показанной на рис. 60. В качестве сырья используют фракцию 200—300° С прямой перегонки ромашкинской нефти с содержанием серы 1,10%. Можно использовать и другие прямогонные дистилляты, выкипающие в указанных пределах и содержащие 1,0—1,5% серы. В качестве эталона используют промышленный алюмокобальтмолибденовый катализатор, приготовленный в 1956 г. на Ново-Куйбышевском НПЗ со следующими свойствами  [c.178]

    Через холодильник пропускают холодную воду. Колбу собранного прибора устаиавли)за-ют в предварительно нагретый колбонагреватель, нагревают содержимое колбы до кипения с такой скоростью, чтобы дефлегмация началась через 12—17 мин 1юс-ле начала нагрева, и далее перегонку ведут так, чтобы из срезанного конца трубки холодильника в приемник-ловушку падали 1—3 капли в секунду. [c.254]


Смотреть страницы где упоминается термин Перегонка скорость: [c.1107]    [c.63]    [c.110]    [c.124]    [c.169]    [c.64]    [c.115]    [c.164]    [c.442]    [c.201]    [c.512]   
Препаративная органическая химия (1959) -- [ c.132 ]

Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.65 ]

Препаративная органическая химия (1959) -- [ c.132 ]

Общий практикум по органической химии (1965) -- [ c.54 ]

Фенолы и основания из углей (1958) -- [ c.279 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.131 ]




ПОИСК







© 2025 chem21.info Реклама на сайте