Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ультрафильтрация промышленная

    Физико-химические методы играют существенную роль при обработке производственных сточных вод. К ним относятся следующие коагуляция и флокуляция, сорбция, ионный обмен, экстракция, различные электрохимические методы, мембранные методы (обратный осмос, ультрафильтрация) и др. Эти методы используют как самостоятельно, так и в сочетании с механическими, биологическими и химическими методами очистки. В настоящее время область применения физико-химических методов очистки расширяется. Наиболее эффективное применение физико-химических методов достигается в локальных системах очистки сточных вод промышленный предприятий. [c.134]


    Как и всем мембранным методам, обратному осмосу и ультрафильтрации свойственно явление концентрационной поляризации, которое заключается в увеличении концентрации растворенного вещества у поверхности мембраны вследствие преимущественного переноса растворителя через мембрану. В результате происходит падение проницаемости и селективности, сокращается срок службы мембран. Для уменьшения вредного влияния концентрационной поляризации необходимо турбулизовать прилегающий к поверхности мембраны слой жидкости, чтобы ускорить перенос растворенного вещества в ядро разделяемого раствора. Этого добиваются применением в лабораторных установках магнитных мешалок и вибрационных устройств, а в промышленных условиях увеличением скорости протекания жидкости вдоль мембраны и использованием различного рода турбулизаторов. [c.18]

    За рубежом, и прежде всего в США, Японии, Англии, Франции, ФРГ, обратный осмос и ультрафильтрация получили широкое промышленное развитие для обработки воды и водных растворов, очистки сточных вод, очистки и концентрирования растворов высокомолекулярных веществ. В настоящее время в этих странах действует несколько тысяч обратноосмотических и ультрафильтрационных установок производительностью от 1—3 до 17 000 м /сут (например, на одном из металлургических заводов в Японии для очистки сточных вод). В США в 1981 г. должна вступить в строй обратноосмотическая (в сочетании с электродиализом) опреснительная установка производительностью около 38 000 м /сут. С пуском этой установки, а также ряда других (см. главу VI) около половины опресняемой на нашей планете воды будет обрабатываться мембранными методами. [c.8]

    Наряду с другими мембранными методами разделения жидких систем, широкое распространение в промышленности и лабораторной практике получили обратный осмос и ультрафильтрация. [c.14]

    В химической, микробиологической, пищевой, фармацевтической и других отраслях промышленности часто встречается задача очистки растворов высокомолекулярных соединений (полимеров, белков и т. д.) от низкомолекулярных примесей (неорганических солей, спиртов и т. д.). Исследования, проводимые за последние годы, показали, что для этой цели можно с высокой эффективностью использовать диафильтрацию. Д и а ф и л ь т р а ц и я — это способ проведения обратного осмоса и ультрафильтрации, используемый в случаях, когда мембрана обладает заметно различной селективностью по отношению к разделяемым компонентам раствора. При диафильтрации в раствор вводится растворитель, расход которого равен количеству отбираемого фильтрата. Компонент раствора, плохо задерживаемый мембраной (НС), переходит вместе с растворителем в фильтрат, и таким образом в аппарате происходит [c.239]


    Исключительный интерес представляет применение обратного осмоса и ультрафильтрации для очистки промышленных и бытовых стоков, опреснения морских и солоноватых вод. Следует отметить, что эти процессы при условии создания достаточной промышленной базы для изготовления мембран, соответствующих материалов и мембранных аппаратов займут лидирующее положение в решении перечисленных выше важнейших технических и экологических проблем. [c.277]

    Накопленный за последние годы опыт создания и эксплуатации промышленных установок, а также обширный экспериментальный материал по исследованию обратного осмоса и ультрафильтрации позволяют автору критически рассмотреть достоинства и недостатки этих методов, сопоставить их с другими методами разделения, а также описать физико-химическую сущность и основные закономерности обратного осмоса и ультрафильтрации, что позволило разработать принципы расчета мембранных процессов и аппаратов. [c.9]

    В промышленных масштабах ультрафильтрацией очищают сточные воды, отделяют культуральные жидкости от продуктов микробиологического синтеза, концентрируют биологически активные вещества белки, ферменты, антибиотики и т. д. [c.23]

    Обращает на себя внимание быстрая окупаемость установки— 1,36 года. При этом решается проблема безотходного процесса обработки латексных эмульсий. Еще более быстрый срок окупаемости (менее одного года) достигается при применении ультрафильтрации в установках электрофоретического покрытия лаком поверхностей в машиностроительной (особенно автомобилестроительной) промышленности. Принцип заключается в том, что из лака электрофоретических ванн извлекается фильтрат, служащий в качестве промывной жидкости (для промывки окрашенных узлов и деталей), основная часть которой затем возвращается в ванну. При этом практически полностью исключены потери лака, отпадает необходимость в очистке сточной воды, снижается расход свежей воды и т. и. [c.284]

    Важным преимуществом обратного осмоса и ультрафильтрации является простота конструкции установок, которые включают два основных элемента устройство для создания давления жидкости и разделительную ячейку с закрепленными в ней полупроницаемыми мембранами, а в крупных промышленных установках — многосекционный аппарат, обеспечивающий необходимую поверхность мембран. Одним из достоинств разделения обратным осмосом и ультрафильтрацией является осуществление этих процессов при температуре окружающей среды, что имеет исключительно важное значение при разделении нетермостойких растворов. [c.17]

    Однако важнейшие преимущества этих методов, перекрывающие отмеченные выше недостатки, позволяют сделать заключение о несомненной их перспективности. Это подтверждается не только большим потоком научных публикаций и патентов по обратному осмосу и ультрафильтрации [1 —12], но и накопленным экспериментальным материалом, полученным как на лабораторных, так и на опытно-промышленных и промышленных установках [4—12]. [c.18]

    К исследованию этих методов, выявлению возможности их применения для решения различных новых практических задач подключается все большее число исследователей и практиков, которые ранее этой проблемой не занимались. Кроме того, при расчете и проектировании обратноосмотических и ультрафильтрационных промышленных аппаратов и установок для получения исходных данных часто необходимо, как это будет показано в главе V, проведение предварительных экспериментов иа лабораторных, а иногда и на модельных установках. В настоящее время в мире функционирует несколько тысяч установок обратного осмоса и ультрафильтрации различной производительности — от нескольких литров до сотен кубометров в час. В ближайшее время в нашей стране и за рубежом следует ожидать резкого увеличения как числа, так и производительности таких установок, используемых в различных технологических процессах. [c.109]

    К аппаратам промышленных масштабов предъявляются требования, определяемые условиями их изготовления и эксплуатации. Прежде всего, промышленные аппараты для осуществления мембранных процессов, в том числе и для обратного осмоса и ультрафильтрации, должны иметь большую рабочую поверхность мембран в единице объема аппарата. Они должны быть простыми в сборке и монтаже ввиду необходимости периодической смены мембран. При движении жидкости по секциям или элементам аппарата она должна равномерно распределяться над мембранной поверхностью и иметь достаточно высокую скорость течения для снижения влияния концентрационной поляризации (см. стр. 170). При этом перепад давления в аппарате должен быть по возможности небольшим. Кроме того, необходимо выполнение всех требований, связанных с работой аппаратов при повышенных давлениях обеспечение механической прочности, герметичности и т. д. Создать аппарат, который в полной мере удовлетворяет всем требованиям, по-видимому, невозможно. Поэтому для каждого конкретного процесса разделения следует подбирать конструкцию аппарата, обеспечивающую наиболее выгодные условия проведения именно этого процесса. [c.115]


    Аппараты с мешалками используются в основном при лабораторных исследованиях обратного осмоса и ультрафильтрации (см. стр. ПО). Однако в ряде специальных случаев подобные аппараты могут найти применение и в промышленности, если по каким-либо причинам необходимо интенсивное перемешивание разделяемого раствора, например при использовании аппарата в качестве реактора с отводом одного из продуктов реакции через мембрану и т. п. [c.238]

    Михаэле [131] в своем обзоре осветил развитие мембранной ультрафильтрации, изложил ее основные принципы, виды оборудования и области применения в химической промышленности. Портер и Михаэле [132] провели сравнение областей размеров молекул и частиц, доступных процессам разделения. Они описали применяемые мембраны с однородными по размеру порами, [c.462]

    Наибольшее распространение в настоящее время обратный осмос и ультрафильтрация получили для обработки воды, прежде всего для обессоливания морских и солоноватых вод, а также промышленных и бытовых стоков. Вместе с тем успешная работа обратноосмотических и ультрафильтрационных установок во многом зависит от предварительной очистки вод, поступающих на мембранное разделение. [c.294]

    В химической и нефтехимической промышленности обратный осмос и ультрафильтрация могут с успехом применяться для решения следующих проблем  [c.279]

    Вопросы водоподготовки и очистки сточных вод (в том числе для химической и нефтеперерабатывающей промышленности) бу дут рассмотрены ниже (см. стр. 294). Перечень примеров применения обратного осмоса и ультрафильтрации может быть значительно расширен, по [c.285]

    Особенно перспективно сочетание методов обратного осмоса и ультрафильтрации в молочной промышленности, что дает возможность получать молочные продукты в очищенном виде [201]. Цельное молоко и сливки, например, могут быть ультрафильтрационно сконцентрированы при низких давлениях, что значительно снижает расходы на их транспортирование и хранение. Затем концентрат вновь можно разбавить водой, и полученный продукт не будет отличаться от исходного. В сущности, любой раствор, содержащий протеин, независимо от происхождения содержащихся в нем примесей, может быть дешево и эффективно сконцентрирован и очищен ультрафильтрацией. [c.290]

    Микрофильтрацию проводят при очень небольших рабочих давлениях (порядка десятых и даже сотых долей мегапаскаля). Этот процесс занимает промежуточное положение между ультрафильтрацией и обычной фильтрацией без резко выраженных границ. Он получил широкое распространение в электронной, медицинской, химической, микробиологической и других отраслях промышленности для концентрирования тонких суспензий (например, латексов), осветления (удаления взвешенных веществ) различных растворов, очистки сточных и природных вод и т.д. Применение микрофильтрации эффективно для подготовки жидкостей перед проведением процесса обратного осмоса, нано- и ультрафильтрации (например, перед опреснением морской и солоноватых вод). [c.327]

    Предназначены для разделения, концентрирования и очистки растворов методом обратного осмоса и ультрафильтрации. Применяются для деминерализации сточных вод и извлечения компонентов из промышленных стоков химических и других производств, а также для концентрирования ферментов, биологически активных веществ в микробиологической, химической, целлюлозно-бумажной и других отраслях промышленности. [c.919]

    Применяют в лабораторных и промышленных условиях для ультрафильтрации биологических жидкостей и медицинских препаратов в микробиологической и других отраслях промышленности. В каче- [c.920]

    При ультрафильтрации исходный раствор разделяется на два принципиально новых продукта низкомолекулярный (фильтрат) и высокомолекулярный. Фильтрат проходит сквозь мембрану и удаляется через дренажную систему, а высокомолекулярный продукт концентрируется. Ультрафильтрация позволяет вьщелять молочные белки из вторичных продуктов молочной промышленности и ценные вещества из других пищевых растворов, получать дополнительные резервы производства продуктов питания. Например, выход фруктовых соков из исходного продукта при ультрафильтрации увеличивается до 95...99 %. [c.518]

    В качестве полупроницаемых мембран для диализа используют целлофан, пленки из нитратов и ацетатов целлюлозы, микропористый поливинилхлорид и др. Диализ обычно применяют для извлечения из растворов низкомолекулярных соединений в медицинской и химической промышленности, производстве ряда биохимических препаратов и др. В ряде случаев, особенно если допустимо применение повышенного давления над разделяемым раствором, диализ вытесняется более интенсивным мембранным методом - ультрафильтрацией. [c.336]

    Реагентная ультрафильтрация резко расширяет область применения мембранных методов разделения. Появилась возможность использования высокопроизводительных процессов для обезвреживания промышленных стоков, которые раньше можно было очистить только обратным осмосом. Этим методом можно селективно удалять из отходов загрязняющие компоненты, не затрагивая солевого балласта. Кроме того, облегчается утилизация и переработка извлеченных токсичных компонентов. [c.230]

    Ультрафильтрация может использоваться для концентрирования разбавленных стоков, например обычных коммунальных стоков, или для обработки жидкой фракции высококонцентрированных промышленных или сельскохозяйственных стоков. [c.356]

    Однако время показало, что это не так. Благодаря усилиям таких энтузиастов как Ю. А. Авдонин, Н. И. Белов, В. П. Дубяга, Ф. Н. Карелин, Е. Е. Каталевский, Н. Е. Кожевникова, Р. Г. Кочаров, Л. С. Лукавый, Н. И. Николаев, Л. П. Перепечкин, К- М. Салдадзе, В. А. Фед-ченко и др. при активной поддержке Государственного Комитета СМ СССР по науке и технике. Научного Совета АН СССР Теоретические основы химической технологии . Министерства химической промышленности и других организаций и ведомств обратный осмос и родственный ему процесс — ультрафильтрация вышли в нашей стране на порог широкого промышленного использования. [c.7]

    Ультрафильтрация представляет большой интерес для выделения декстринов из крахмала, спиртов из растворов, получающихся при брожении различных продуктов, аминокислот и многих других веществ из различных отходов пищевой промышленности. При непрерывной ульт-рафильтрацни через мембрану могут проникать целевой продукт и низкомолекулярные вещества, которые при необходимости можно разделить последующей ультрафнльтрацией через более микропористые ультрафильтры. Образующийся концентрат возвращается в реактор. Такой процесс не сложен, но позволяет получать чистый продукт и сохранять в реакторе оптимальную концентрацию микроорганизмов и ферментов. Количество отходов при этом мало. [c.293]

    В настоящее время в промышленности используется свыше 20 процессов переработки ОМ, основанных на самых различных способах очистки (сернокислотная, адсорбционная, гидроочистка, экстракция, термокрекинг, тонкопленочное вакуумное испарение, ультрафильтрация и ряд др.). Все они позволяют получать маспа, которые по качеству близки к свежим базовым. [c.252]

    Среди разнообразных промышленных процессов вторичной переработки выделяют группы по основному способу очистки сернокислотная, адсорбционная, гидроочистка, экстракционная, тонкопленочное испарение, ультрафильтрация. Отдельно следует рассматривать комбинированный процесс PROP с использованием химического способа деметаллизации ОМ [1, 10, 27, 47, 56, 99, 100]. [c.290]

    Наиболее перспективными из физико-химических методов являются обратный осмос, ультрафильтрация, тонкопленочное испарение или электрохимические методы разрушения эмульсионных СОТС, а также совмещение их с реагентными способами [92, 289]. Представляет интерес способ интенсификации технологии мембранного разделения, основанный на магнитоожижении магнитных металлокерамических тел, устанавливаемых в канале трубчатых элементов, что способствует более высокому концентрированию маслопродуктов и повышению производительности ультрафильтрации в 1,1 —1,3 раза. С целью сокращения расхода энергии и увеличения производительности процесса изучена возможность применения цилиндрического вращающегося модуля ультрафильтрации. За рубежом ультрафильтрацию особенно широко используют в автомобильной промышленности. [c.326]

    Если прекратить подачу частиц в фильтруемую жидкость, подобная мембрана, являющаяся динамическим образованием, разрушится. Динамическая природа мембраны определяет ее полезные технологические свойства. Состав мембраны непрерывно обновляется, вследствие чего она сохраняет свои полезные свойства в экстремальных условиях. Эксплуатация установок обратного осмоса на основе полимерных мембран требует дорогостоящей предварительной очистки, так как на поверхности мембран формируется осадок, снижающий и селективность, и проницаемость. Динамические мембраны позволяют отказаться от предварительной очистки. Наконец, опыт эксплуатации динамических мембран (например, на стоках предприятий целлюлозно-бумажной промышленности) показал, что можно отказаться от ввода частиц мембранообразующего компонента. Динамическая мембрана формируется из содержащихся в стоках коллоидных или полимерных частиц и при этом обеспечивает необходимую степень опреснения. На основе динамических мембран одновременно решаются две задачи —достигается очистка от дисперсных (или полимерных) частиц и опреснение, одновременно протекают два процесса — ультрафильтрация и обратный осмос. [c.386]

    Предназначена для ультрафильтрации обезжи- сыров, творога, творожных паст и кисломолочных ренного молока с Целью получения молочного кон- напитков. Применяется на предприятиях молочной центрата заданного состава для его последующего промышленности, использования при производстве различных видов [c.922]

    Среди мембранных методов разделения жидких смесей важное место занимают обратный осмос и ультрафильтрация [1—3]. В последние годы их начали применять для опреснения соленых воД, очистки сточных вод, получения воды повышенного качества, концентрирования технологических растворов в химической, пищевой, микробиологической и других отраслях промышленности Обратный осмос и ультрафильтрация основаны на фильтровании растворов под давлением,. вышающим осмотическое, через полупроницаемые мембраны, пропускающие растворитель, но задерживающие растворенные вещества (низкомолекулярные при обратном осмосе и высокомолекулярные при ультрафильтрации). Разделение проходит при температуре окружающей среды без фазовых превращений, поэтому затраты энергии значительно меньше, чем в большинстве других методов разделения (таких как ректификация, кристаллизация, выпаривание и др.), М алая энергоемкость и сравнительная простота аппаратурного оформления обеспечивают высокую экономическую эффективность указанных процессов. [c.319]

    К основным мембранным методам разделения, достаточно широко применяемым в различных отраслях промышленности, относятся обратный осмос, ультрафильтрация, микрофильтрация, диализ, электродиализ, испарение через мембрану, разделение газов. Разрабатываются новые мембранные методы мембранная дистилляция, электроосмофильтрация и др. В любом из этих процессов разделяемая смесь соприкасается с полупроницаемой мембраной. [c.313]

    В промышленности часто приходится разделять разбавленные растворы, содержащие ионы электролитов с близкими свойствами. Для выделения из многокомпонентных растворов нужного электролита перспективно использовать комбинированный метод, включающий комплексообразование и ультрафильтрацию (КОУФ). Он состоит в том, что ионы электролита, подлежащего выделению, образуют с введенным в разделяемый раствор высокомолекуляр- [c.329]

    Успешно решаются в производствах ПВХ вопросы ресурсосбережения и экологии. Найдены эффективные методы глубокой дегазации ПВХ путем отгонки ВХ острым водяным паром, что позволило снизить содержание остаточного мономера в ПВХ до 1 млн . Разработаны также и реализованы в промышленности способы улавливания абга-зного ВХ с возвращением его в производственный цикл. Это позволило поддерживать концентрацию ВХ в воздухе производственных помещений в пределах ПДХ (до 1 мг/м ). При реконструкции действующих и строительстве новых производств ПВХ предусматриваются установки для переработки твердых отходов ПВХ в материалы и изделия, находящие применение в народном хозяйстве Большой практический интерес представляет разработанный в СССР способ очистки сточных вод производства ПВХ, основанный на новых современных процессах - ультрафильтрации и озонировании, который позволяет очищать воду не только от взвешенных твердых веществ, но и от ПАВ, и возвращать ее в технологический цикл, т.е. организовать замкнутый технологический водооборот. Разрабатывается и перспективный энергосберегающий способ сушки ПВХ в среде перегретого водяного пара. Комплексное решение задач по энерго- и ресурсосбережению и по экологической чистоте производств ПВХ позволяет довести расходную норму по сырью до 1,01 т/г ПВХ и ниже. [c.9]

    В качестве примера иммобилизации ферментов и использования их в промышленности приводим схему непрерывного процесса получения аминокислоты аланина и регенерации кофермента (в частности, НАД) в модельной системе. В этой системе исходный субстрат (молочная кислота) подается при помощи насоса в камеру-реактор, содержащий иммобилизованные на декстране НАД и две НАД-зависимые дегидрогеназы лактат- и аланиндегидрогеназы с противоположного конца реактора продукт реакции —аланин—удаляется с заданной скоростью методом ультрафильтрации. [c.164]

    В настоящее время в промышленности используется свыше 20% вторичной переработки смазочных материалов, основанных на самых различных способах очистки (сернокислотная, адсорбционная, гидроочистка, экстракция, крекинг, тонкоплёночное вакуумное испарение, ультрафильтрация, экстракция газами в сверхкритическом состоянии и др.). [c.358]

    В РФ достаточно распространены термические способы обезвреживания сжиганием в специальных печах и упариванием. Большая часть известных промышленных способов разрушения отработанных СОТС приходится на физико-химические методы с использованием химических реагентов для вьщеления масляной фазы. Наиболее перспективными из методов являются обратный осмос, ультрафильтрация, тонкоплёночное испарение. [c.363]

    Книга, написанная ведущими специалистами США и Японии в области мембранной технологии, посвящена физико-химическим, конструкторско-технологическим и экономическим аспектам электродиализа, обратного осмоса и ультрафильтрации. В ней рассмотрен ряд конкретных про-мьш1ленных применений мембранной технологии (в пищевой, бумажно-целлюлозной, химической промышленности и т. д.). [c.4]

    Аналогично построена вторая часть. Вводная гл. 7 написана проф. Рейдом, работы которого впервые познакомили нас с обратным осмосом. В гл. 8 описаны мембраны, используемые в процессах ультрафильтрации и обратного осмоса, и основные принципы осуществления этих процессов. В гл. 9 рассмотрены затраты на осуществление процессов ультрафильтрации и обратного осмоса. Следующие три главы (гл. 10-12) являются иллюстративными пр -мерами применения мембранных процессов под действием давления. Главы 10 и 11 посвящены использованию обратного осмоса в пищевой и целлюлозно-бумажной отраслях промьш1ленности, а гл. 12-применению ультрафильтрации и обратного осмоса для обрабогки промышленных отходов. В гл. 13 исчерпывающе изложены процессы мембранного газоразделения под действием давления. [c.9]


Смотреть страницы где упоминается термин Ультрафильтрация промышленная: [c.4]    [c.125]    [c.333]    [c.194]    [c.607]    [c.223]    [c.223]    [c.253]   
Мембранная фильтрация (1978) -- [ c.365 , c.366 ]




ПОИСК





Смотрите так же термины и статьи:

Крупномасштабное применение ультрафильтрации в промышленности

Промышленные аппараты обратного осмоса и ультрафильтрации

Ультрафильтрация

Ультрафильтрация в пищевой промышленности



© 2025 chem21.info Реклама на сайте