Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Субстраты неорганические

Рис. 74. Применение метода Диксона для определения константы конкурентного ингибирования коферментом А реакции фосфотрансацетили-рования, катализируемой фосфат-ацетилтрансферазой [31], если концентрация неорганического субстрата (фосфата), мМ Рис. 74. <a href="/info/24235">Применение метода</a> Диксона для <a href="/info/829285">определения константы конкурентного</a> ингибирования коферментом А реакции фосфотрансацетили-рования, катализируемой <a href="/info/612132">фосфат-ацетилтрансферазой</a> [31], если <a href="/info/66688">концентрация неорганического</a> субстрата (фосфата), мМ

    Ацетил — СоА -Ь фосфата Ацетилфосфат -Ь СоА. (5.43) В табл. 13 приведены данные по влиянию СоА на начальную скорость реакции (5.43) при вариации концентраций обоих субстратов. Определить тип ингибирования коферментом по отношению к нуклеотидному (Ацетил — СоА) и неорганическому субстрату и вычислить соответствующие константы ингибирования. [c.92]

    При реакциях нуклеофильного замещения в алифатическом ряду происходит взаимодействие органических соединений субстратов), у которых имеется дефицит электронной плотности на ато-.Vie углерода, связанном с электроноакцепторной группой X, с органическими или неорганическими соединениями или анионами, Y или Y (нуклеофильными реагентами), в состав которых входят один или несколько атомов с неподеленными парами электронов на внешней оболочке. [c.96]

    Клетка. Основу биотехнологической системы составляют процессы микробиологического синтеза, направленные на получение разнообразных целевых продуктов биосинтеза — белков, аминокислот, липидов и др. Важную роль играют также процессы биологической очистки, направленные на утилизацию органических и неорганических соединений растущими на данном субстрате микроорганизмами. Индустриальное использование процессов культивирования микроорганизмов связано со способностью клеток в определенных условиях окружающей среды расти и размно- [c.7]

    В ранних работах по МФК реакций в присутствии сильных неорганических оснований предполагалось, что механизм этих реакций включает экстракцию [Q+OH-] в органическую среду, где и происходит депротонирование и алкилирование субстрата  [c.57]

    В качестве субстратов вместо спиртов часто используют алкилгалогениды. При этом обычно берут соль неорганической кислоты и реакция идет как нуклеофильное замещение у атома углерода. Важным примером служит реакция алкилгалогенидов с нитратом серебра, приводящая к алкилнитратам (реакция часто применяется как тест на алкилгалогениды). В некоторых случаях наблюдается конкуренция со стороны центрального атома. Так, нитрит-ион, будучи амбидентным нуклеофилом, может давать нитриты или нитросоединения (см. реакцию 10-62). В некоторых случаях субстратами могут быть и простые эфиры. Диалкиловые и алкилариловые эфиры, например, можно расщепить действием безводных сульфоновых кислот [602]  [c.138]

    АДГЕЗИЯ ПОЛИМЕРОВ К СУБСТРАТАМ НЕОРГАНИЧЕСКОЙ ПРИРОДЫ [c.288]

    Исследована кинетика окисления кислородом двух субстратов неорганического феррицианид-иона и органического соединения гидрохинона. При этом изучена зависимость скорости гомогенного окисления в растворе от концентрации фермента, субстратов, ионов водорода. [c.158]


    Исследование механизмов индивидуального окисления субстратов, катализируемое пероксидазой, способствовало созданию представления о пероксидазе как ферменте, не обладающем избирательностью действия и способного окислять широкий спектр субстратов неорганической и органической природы, в присутствии перекиси водорода. Однако это мнение может быть опровергнуто при проведении реакций совместного окисления субстратов, в которых проявляется специфичность действия фермента и упорядоченность процесса пероксидазного окисления. Очередность реакций окисления при этом задается более высоким сродством одного из субстратов. [c.42]

    Эфиры неорганических кислот, включая и перечисленные выше, можно гидролизовать до спиртов. Особенно успешно такие реакции идут с эфирами сильных кислот, но при использовании гидроксид-иона (более сильного нуклеофила) или при проведении реакции в кислой среде (что облегчает отщепление уходящей группы) эту реакцию можно провести и с эфирами более слабых кислот. При гидролизе субстратов винильного типа образуются альдегиды или кетоны. [c.102]

    Можно утверждать, что без катализа вообще была бы невозможна жизнь. Достаточно сказать, что лежащий в основе жизнедеятельности процесс ассимиляции двуокиси углерода хлорофиллом растений является фотохимическим и каталитическим процессом. Простейшие органические вещества, полученные в результате ассимиляции, претерпевают затем ряд сложных превращений. В химические функции живых клеток входит разложение и синтез белка, жиров, углеводов, синтез различных, часто весьма сложных молекул. Таким образом, клетка является своеобразной и весьма совершенной химической лабораторией, а если учесть, что все эти процессы каталитические — лабораторией каталитической. Катализаторами биологических процессов являются особые вещества —ферменты. Если сравнивать известные нам неорганические катализаторы с ферментами, то прежде всего поражает колоссальная каталитическая активность последних. Так, 1 моль фермента алкогольдегидрогеназа в 1 сек при комнатной температуре превращает 720 моль спирта в уксусный альдегид, в то время как промышленные катализаторы того же процесса (в частности, мeдь)J при 200° С в 1 сек превращают не больше 0,1 — 1 моль на один грамм-атом катализатора. Или, например, 1 моль фермента каталазы при 0°С разлагает в одну секунду 200 000 моль перекиси водорода. Наиболее же активные неорганические катализаторы (платиновая чернь) при 20° С разлагают 10—80 моль перекиси в 1 сек на одном грамм-атоме катализатора. Приведенные примеры показывают, что природные биологические катализаторы во много раз превосходят по активности синтетические неорганические катализаторы. Высокая специфичность и направленность действия, а также способность перерабатывать огромное количество молекул субстрата за короткое время при температуре существования живого организма и позволяет ферментам в достаточном количестве давать необходимые для жизнедеятельности соединения или уничтожать накапливающиеся в процессе жизнедеятельности бесполезные, а иногда и вредные продукты. [c.274]

    Химические методы сводятся к обработке таких материалов органическими (в неводных) или неорганическими (в водных средах) пероксидами. Закрепление низкомолекулярного вещества в полимерном субстрате является результатом протекания трех сопряженных процессов  [c.373]

    Поскольку в гомогенной среде взаимодействие реагирующих веществ облегчается, при выборе растворителя необходимо учитывать их растворимость. Подбор растворителя представляет значительные трудности в тех случаях, когда в качестве нуклеофильных реагентов применяют соли неорганических кислот, плохо растворимые в органических растворителях, но хорошо растворимые в воде, в то время как органические субстраты плохо растворимы вводе, но хорошо растворимы в органических растворителях. Для полу- [c.95]

    В ходе органических реакций, как правило, друг с другом взаимодействуют два и более соединения. При этом более сложное соединение называют субстратом, а другое (обычно меньшее и часто относящееся к неорганическим соединениям)— реактивом или реагентом. Эти названия теряют смысл в том случае, когда реагируют два органических соединения примерно одинакового размера, потому что трудно различить, какое из них является субстратом, а какое — реагентом. [c.110]

    Было показано, что по критерию активности роста меласса в качестве источника углеродного питания является наиболее предпочтительным субстратом по сравнению с глюкозой, сахарозой и этанолом. Установлено, что оптимальным режимом введения источника углерода является дробное внесение мелассы в количестве 3% объемных. Установлено, что, хотя исследуемая культура способна усваивать аммонийный азот неорганических соединений, выход биомассы значительно повышается в присутствии органического азота. [c.159]


    К субстратам, подверженным грибному разрушению, относят металлы, металлические и неорганические покрытия, целлюлозу, материалы и изделия на ее основе (картон, бумагу, и т. п.), полимерные материалы и покрытия, клеи различных составов, эластомеры, например природную и синтетическую резину, натуральную и искусственную кожу, лакокрасочные покрытия, нефтепродукты (смазочные материалы, масла, горючее), строительные материалы (бетон, камень, связующее, стекло, кремнеорганические материалы, дерево, асфальт) и т. п. [c.30]

    Эксперименты с различными субстратами. Значительная часть исследований посвящена вариантам реакции Б—Ж, в которых малоновая кислота заменена другим органическим (или неорганическим) субстратом. Эти исследования обобщены ниже и сведены в табл. 7 (сы. также [166]). [c.103]

    Другие эксперименты в ППР. Крук и др. [48] обсудили процесс ферментации и роста дрожжей в ППР, содержащем питательную среду, которая состояла из глюкозы, витаминов и неорганических веществ. Обозначив концентрацию клеток X, концентрацию субстрата [c.113]

    Экспериментально доказано существование по крайней мере трех индивидуальных переносчиков, катализирующих электронейтральный обмен фосфата на анионы дикарбоновых кислот, а-кетоглутарата — на анионы дикарбоновых кислот и анионов трикарбоновых кислот — на анионы дикарбоновых кислот. С участием специфических переносчиков осуществляется транспорт неорганического фосфата и глутамата в митохондриях. Субстратом переносчика фосфата в митохондриях является моноанион фосфорной кислоты, и распределение фосфата по обе стороны мембраны зависит от величины градиента pH. Таким образом, градиент pH, генерируемый на мембране в результате работы дыхательной цепи или АТФ-азы митохондрий, реализуется в градиент концентрации фосфата, а последний, в свою очередь, является движущей силой в перераспределении анионов ди- и трикарбоновых кислот. [c.447]

    Высокая специфичность внутренней мембраны в отношении проницаемости для разных веществ привела к представлению о существовании в ней ферментов-переносчиков. Так как многие субстраты ферментов, локализованных внутри митохондрий, при физиологических значениях pH являются ионами (нуклеотиды, субстраты цикла трикарбоновых кислот, неорганический фосфат, катионы и т. д.), представляет интерес идентификация ионных форм транспортируемых веществ. Такие данные важны для понимания конкретного механизма переноса субстрата через мембрану. [c.458]

    Строят график зависимости активированного ионами Са + дыхания от pH среды инкубации и анализируют возможные ее причины с учетом влияния pH а) на активность системы аккумуляции энергии (транспорт субстрата через мембрану, перенос электронов в дыхательной цепи, аппарат сопряжения) б) на активность переносчиков Са и неорганического фосфата в мембране в) на концентрацию истинного субстрата переносчика неорганического фосфата в связи с изменением соотношения различных ионных форм фосфата [c.459]

    Оптим. каталитич. активность П. из разных источников в р-циях с орг. субстратами при pH 5-7, с неорганическими при pH 4. Ингибиторы П.-ионы, образующие прочные комплексы с катионом Fe( N , N3,82 и др ). [c.489]

    Механизмы непрямого окисления были предложены в тех случаях, когда вольтамперометрические исследоваиия не дают однозначной информации о природе электрохимически активных частиц. Обычно предполагают, что происходит окисление аниона электролита фона с образованием неорганического радикала, который затем атакует слабую С—Н-связь органического субстрата (уравнение 13.7), например связь С—Н в бензильной группе в алкилароматических углеводородах Иногда механизм этого типа трудно отличить от механизма прямого окисления [c.400]

    За 150 лет, прошедших со времени первых успешных экспериментов Вёлера, органический синтез дал в руки химика арсенал изощренных методик, приводящий даже в некоторое замешательство своим объемом. Однако наблюдая легкость, с которой живые организмы создают сложные структуры в практически водных средах и при температурах немного выше комнатной, химик убеждается, что его прогресс в этой области не столь уж велик. Действительно, химики-органики постоянно стараются создать более быстрые, более простые и более дешевые препаративные методы. Поэтому эта книга является попыткой собрать рассеянные в литературе примеры новой техники проведения органических реакций — техники, которая начала использоваться только в последнее десятилетие. Во многих случаях новая методика снимает обычное требование проведения органических реакций в гомогенных, часто абсолютных , т. е. тщательно высушенных, средах. При межфазном катализе (МФК) субстрат, находящийся в органической фазе, учат ствует в химической реакции с реагентом, который находится в другой фазе — жидкой или твердой. Реакция осуществляется при помощи агента-переносчика. Этот агент, или катализатор, способен солюбилизировать или экстрагировать в органическую среду неорганические и органические ионы в форме ионных пар. [c.9]

    Если индикаторная реакция катализируется ферментами, то такие электрохимические системы называют ферментными электродами. По номенклатуре ИЮЕ[АК ферментный электрод определяется как датчик в котором ионоселективный электрод покрыт слоем, содержащим фермент, вызывающий реакцию органического или неорганического вещества (субстрата) с образованием веществ (ионов, молекул), обусловливающих отклик электрода . В настоящее время понятие ферментный электрод несколько расширилось, так как в него включают электрохимические системы с ферментом, закрепленным не только на чувствительном элементе ионоселективного электрода, но и на носителе, расположенном на некотором расстоянии от него или даже в растворе. В первых ферментных электродах ферменты физически удерживались на поверхности электрода или в непосредственной близости от него. Позже были предложены методы химической иммобилизации, осаждения и др. [c.213]

    Повышение активности фосфорилазы Ь при взаимодействии с АМР было первым примером действия аллостерического эффектора [6]. Фосфорилаза Ь в отсутствие АМР неактивна, однако в его присутствии она так же активна, как и фосфорилаза а. Повышение активности фосфорилазы Ь при взаимодействии с АМР критически зависит от концентрации субстрата— неорганического фосфата (Pi). При увеличении концентрации Pi концентрация АМР, необходимая для достижения полумаксимальной активации, Ка, уменьшается, и наоборот, при увеличении концентрации АМР Км для Pi снижается [21]. Следовательно, Pi и АМР являются синергическими активаторами фосфорилазы. В то же время АТР и глюкозо-6-фосфат (Г6Ф) выступают как антагонисты АМР. [c.71]

    Главная группа Г. Субстраты неорганической и. органической природы. Вещества группы Г благодаря процессу разделения в основном отделяются от других веществ. Поэтому вещертва этой группы идентифицируют путем непосредственного анализа исследуемого препарата или при выделении соответствующих остатков или растворов, получаемых в процессе разделения. К группе Г относятся, например, основы мазей и свеч. [c.557]

    Учитывая активность микроорганизмов и ее изменения в зависимости от условий среды, на ЭВМ можно имитировать все наблюдаемые в экспериментах особенности изменения концентрации неорганических и органических соединений азота, а также реконструировать динамику биомассы микроорганизмов. Результаты моделирования выявляют чрезвычайно высокую окислительную активность хемоавтотрофов. Очень низкая доля субстрата, включающегося в компоненты клетки (5% и ниже от трансформированного), возможно, свидетельствует об активности внеклеточных ферментов. [c.160]

    Фосфофруктокиназа — один из ключевых ферментов, регулирующих процесс гликолиза в целом. Активной формой фермента является тетрамер, состоящий из 4 субъединиц с молекулярной массой 83 000 Да каждая. В зависимости от условий тетрамеры могут превращаться в высокополимерные агрегаты или диссоциировать на неактивные димеры и мономеры. Фосфофруктокиназа является аллостерическим ферментом. К числу аллостерических эффекторов относятся субстраты (АТФ, фруктозо-6-фосфат) и продукты реакции (АДФ, фруктозо-1,6-дифосфат), а также такие метаболиты, как АМФ, цАМФ, цитрат, фруктозо-2,6-дифосфат, фосфокреатин, 3-фосфоглицерат, 2-фосфо-глицерат, фосфоенолпируват, ионы МН4+, К+, неорганический фосфат и др. [c.238]

    При адсорбции главную роль ифают ионное и электростатическое взаимодействие носителя и поверхности клеток, поглощение пористой поверхностью, капиллярные явления. Однако сродство того или другого микроорганизма к адсорбенту во многих случа)Гх непредсказуемо. Сам метод технологичск. Суспензия клеток смешивается с носителем, перемешивается несколько часов на качалке, лучше выдержать ее затем при 4°С несколько часов, а затем тщательно отмыть носитель от невключившихся клеток. Положительными качествами метода адсорбции являются следующие относительная дешевизна носителей, отсутствие диффузионных затруднений и токсичного воздействия на микроорганизмы. Преимуществом неорганических адсорбентов, кроме того, можно признать устойчивость к воздействию микроорганизмов, стабильность объема при действии давлений и потока субстрата, высокую плотность. [c.164]

    Группа O OR может замещать и другие уходящие группы. Алкилхлорсульфиты R0S0 1 и другие производные серной, сульфоновых и других неорганических кислот при обработке карбоксилат-ионами дают соответствующие эфиры. Использование диметилсульфата [572] или триметилфосфата [573] позволяет метилировать стерически затрудненные группы СООН. В случае некоторых субстратов карбоновые кислоты оказываются достаточно сильными нуклеофилами, чтобы реакция пошла примерами таких субстратов могут служить триалкил-фосфиты P(0R)3 (574] и ацетали диметилформамида [575]. [c.133]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    Поглощение катионов двухвалентных металлов сопровождается выделением эквивалентного количества протонов из мембраны, так что фактически мембрана (ее связывающие единицы) обменивают протоны на катионы металлов. Перенос ионов приводит к проникновению воды, и митохондрия набухает набухания не происходит, если ионы связываются неорганическим фосфатом и образуют осадок. Одновалентные ионы калия и натрия способны и пассивна проникать во внутреннее пространство, если имеются анионы и субстрат этот процесс также ведет к набуханию митохондрии. В процессе переноса через мембрану, например, аниона фосфорной кислоты, он прежде чем войти в белково-липидный слой мембраны, превращается в нейтральную частицу (лучшая растворимость в липидной среде). По этой причине протоны вместе с анионами также переносятся из внешней во внутреннюю зону. Работа митохондрий по созданиго макроэргических связей не ограничивается образованием только АТФ первичные продукты деятельности аппарата сопряжения, поставляющие активные богатые энергией вещества и для транслоказы, и для образования НАДФ-Нг, и для синтеза АТФ, мало исследованы, хотя работы по их изучению ведутся интенсивно. [c.390]

    Высокое термодинамическое сродство к субстрату является существенным, но не определяющим свойством фермента. Установление механизма распада перекиси водорода дало возможность найти для разных катализаторов истинные значения энергии активации Е и предэкспоненциального множителя к . Огромная активность каталазы и других ферментов целиком обусловливается сильным снижением энергии активации по сравнению с другими типами катализаторов ни один из неорганических катализаторов не способен проводить распад Н2О2 с активационным барьером ниже 46 кДж (платина), каталаза же проводит его при вдвое меньшей высоте энергетического барьера 23 кДж. [c.116]

    Вопрос о различии и сходстве гетерогенных неорганических и гетерогенных биологических катализаторов имеет принципиальное значение, так как именно здесь наиболее типично выражена, с одной стороны, обычная валентная ,а с другой — особая энергетическая форма катализа. Энергетическая природа активации проявляется в зависимости абсолютной активности катализаторов, т. е. числа превращающихся молекул субстрата на одну активную группу в 1 с, от теплового эффекта реакции Рреак (рис. 19). Линейная зависимость между логарифмом абсолютной активности и тепловым эффектом реакции отвечает показательной функции между степенью активации и тепловым эффектом реакции, причем эти функции приобретают вид для ферментов  [c.117]

    По характеру действия ферменты обладают строгой специфичностью, которая обусловлена структурным соответствием между молекулами субстрата ш фермента. Каждый из них катализирует определенную химическую реакцию. На течение последних влияют условия среды (температура, pH, наличие химических соединений, облучение) и присутствие других ферментов [26]. Под действием факторов среды могут синтезироваться и новые ферменты. Их называют адаптивными, так как они позволяют микроорганизмам приспосабливаться к новым условиям. Ферменты, которые участвуют во внутриклеточных процессах,, называют эндоферментами, а ферменты, выделяемые микроорганизмами в окружающую среду, — экзоферментами. Последние могут являться биоцидами для других микроорганизмов или стимулировать процессы коррозии и биоповреждений материалов техники и сооружений. Каталитическая активность ферментов во много раз превышает неорганические катализаторы. Например, 1 мг железа, входящего в состав фермента каталазы, эквивалентен каталитическому действию 10 т железа в составе неорганического соединения прн разложении перекиси водорода, а 1 г амилазы может превратить 1 т крахмала в сахар при соответствующих условиях. [c.14]

    Определение неорганического фосфата. К 1 мл фильтра добавляют 1,0 мл воды, 0,4 мл молибденового реактива и 0,1 мл.рабочего раствора эйконогена, хорошо перемешивают и оставляют на 10 мин в термостате при 37 °С. Раствор быстро охлаждают и тотчас же колориметрируют на ФЭКе. Одновременно строят калибровочный график по стандартным растворам фосфата, содержащим от 0,2 до 2 мкмоль фосфата в пробе (с. 34). По разности содержания неорганического фосфата в пробах после ферментативного гидролиза и в контрольной пробе рассчитывают количество фосфата, образовавшегося в процессе ферментативного расщепления АТФ. Затем рассчитывают активность миозина — в мкмолях превращенного субстрата за 1 мин на 1 мг белка. [c.394]

    ФОРМИХТЫ, соли и эфиры муравьиной кислоты. ФОРМИЛЙРОВАНИЕ, введение формильной группы СНО в молекулу орг. (реже неорганических) соединений. В зависимости от того, к какому атому в субстрате присоединяется формильная группа, различают С-, N-, О- и S-Ф. С-Ф.- один из важнейших методов получения алгдегтадов. Ф. гетероатомов применяют для защиты фупп NH , ОН, SH для получения формамида, эфиров муравьиной и тиомуравьиной к-т для проведения р-ций циклизации. [c.116]


Смотреть страницы где упоминается термин Субстраты неорганические: [c.60]    [c.30]    [c.104]    [c.167]    [c.174]    [c.82]    [c.478]    [c.104]    [c.434]    [c.238]    [c.467]    [c.316]   
Основы адгезии полимеров (1974) -- [ c.288 ]




ПОИСК





Смотрите так же термины и статьи:

Субстрат



© 2024 chem21.info Реклама на сайте