Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксенон см Гелий

    Источником получения кислорода и азота, а также большинства инертных газов (кроме гелия) является атмосферный воздух, запасы которого практически неисчерпаемы и составляют 5,1 -10 т. Состав воздуха, за исключением оксида углерода (IV) и паров воды, постоянен. Воздух содержит (по объему) азота 79,09%, кислорода 20,95%, аргона 0,93%, а также незначительные количества неона, криптона, ксенона, гелия (1,6-10 — 8-10 %) и водорода (5-10 %). Содержание оксида углерода (IV) изменяется в зависимости от близости к населенным пунктам и промышленным предприятиям и составляет, в среднем, [c.229]


    Инертные газы можно разделить на активированном угле [90]. Возможность использования полярных адсорбентов ограничена из-за химиче- ой неактивности инертных газов и симметричной формы их молекул. При нормальной температуре на активированном угле удается полностью разделить неон, аргон, криптон и ксенон. Гелий удается отделить при низкой температуре. Оптимальное разделение всех инертных газов при нормальной температуре достигается на молекулярном сите с размером пор 5 А. [c.513]

    Изотопия инертных газов. Несмотря на то что эманация радия (радон) и другие эманации (если они смешаны) нельзя разделить обычными химическими средствами, их легко получить в чистом виде из радиоэлементов, при распаде которых они образуются. Однако остальные инертные газы в природе встречаются в виде смесей изотопов. Число изотопов в таких смесях значительно возрастает от гелия к ксенону. Гелий имеет только два изотопа, из которых более легкий (атомный вес 3) сопутствует более тяжелому (атомный вес 4) в исчезающе малых количествах (в отношении [c.147]

    На каждый миллион молекул аргона в воздухе приходится лишь 1500 молекул неона, 500 молекул гелия, 50 молекул криптона и лишь одна молекула ксенона. Гелий, как обычный продукт радио- [c.251]

    Воздух представляет собой смесь кислорода и азота с небольшими примесями аргона, криптона, ксенона, гелия, углекислоты. Разделить воздух на кислород и азот в газообразном состоянии практически невозможно. [c.11]

    Воздух представляет собой смесь кислорода и азота с небольшими примесями аргона, криптона, ксенона, гелия и углекислоты. [c.9]

    Помимо азота, из воздуха могут быть извлечены аргон, крип--тон, ксенон, гелий. [c.301]

    Низкотемпературная ректификация широко используется в технике для разделения воздуха с целью получения кислорода, азота, аргона, неона, криптона и ксенона. Гелий, метан, этан также получают в установках низкотемпературного охлаждения при разделении природных и попутных нефтяных газов. [c.196]

    Периодическое изменение свойств элементов представлено в периодической таблице современного вида. При расположении элементов в порядке возрастания атомных номеров и группировке на основании общих свойств они образуют семь горизонтальных рядов, называемых периодами. Каждый вертикальный столбец - группа элементов - содержит элементы с близкими свойствами. Группа лития (Ы), состоит, например, из шести элементов. Все эти элементы - крайне реакционноспособные металлы, образующие хлориды и оксиды общей формулы ЭС1 и Э2О соответственно. Так же, как хлорид натрия, все хлориды и оксиды этих элементов — ионные соединения. В противоположность этому группа гелия, расположенная по правому краю таблицы, состоит из крайне инертных элементов (к настоящему времени известны соединения только ксенона и криптона). Элементы группы гелия известны под названием благородные газы. [c.127]


    Наблюдая одновременно с абсорбцией двуокиси углерода аминами десорбцию из раствора различных газов (гелия, закиси азота и ксенона), Ю. В. Аксельрод и др.19в нашли, что возникающая нестабильность приводит, кроме увеличения значений ku, к снижению влияния коэффициента диффузии D на вплоть до полной независимости kt от D. В то же время при отсутствии абсорбции СО, тем же раствором амина коэффициент физической массоотдачи был пропорционален DO,5. [c.250]

    Газовая смесь при ЮО С и давлении 0,800 атм содержит 50 вес. % гелия Не и 50 вес. % ксенона Хе. Чему равно парциальное давление каждого из этих компонентов газовой смеси  [c.146]

    Сначала определим число молей гелия и ксенона в произвольном образце газа. Удобно выбрать в качестве такого образца газ массой 100 г. Тогда число молей каждого из компонентов окажется равным [c.146]

    Какие же вещества являются элементами Первыми правильно установленными элементами были металлы-золото, серебро, медь, олово, железо, платина, свинец, цинк, ртуть, никель, вольфрам, кобальт, И вообще из 105 известных к настоящему времени элементов только 22 не обладают металлическими свойствами. Пять неметаллов (гелий, неон, аргон, криптон и ксенон) были обнаружены в смеси газов, остающейся после удаления из воздуха всего имеющегося в нем азота и кислорода. Химики считали эти благородные газы инертными до 1962 г., когда было показано, что ксенон дает соединения со фтором, наиболее активным в химическом отнощении неметаллом. Другие химически активные неметаллы представляют собой либо газы (например, водород, азот, кислород и хлор), либо хрупкие кристаллические вещества (например, углерод, сера, фосфор, мыщьяк и иод). При обычных условиях лишь один неметаллический элемент-бром-находится в жидком состоянии, [c.271]

    Подгруппа VI ПА (гелий, неон, аргон, криптон, ксенон, радон) 490 [c.4]

    В книге рассмотрены вопросы производства инертных газов при комплексном разделении воздуха, природных и продувочных газов методами низкотемпературной ректификации н адсорбции. Описаны схемы установок и способы получения аргона, криптона, ксенона, неона и гелия, а также химические и физические методы глубокой очистки этих газов от примесей. Даны основы расчета аппаратов и установок для производства всех инертных газов. [c.183]

    Кислород — активный неметалл. Известны его соединения со всеми элементами, кроме гелия, неона и аргона. С галогенами, криптоном, ксеноном, золотом и платиновыми металлами он непосредственно не реагирует, и их соединения получают косвенным путем. Со всеми остальными элементами кислород соединяется непосредственно. Эти процессы обычно сопровождаются выделением теплоты (экзотер-мичны). [c.111]

    Азот — 1,60 Гелий — 1,00 Ксенон — 12,80 [c.24]

    В восьмую группу периодической системы входят типические элементы (гелий, неон, аргон), элементы подгруппы криптона (криптон, ксенон, радон), элементы подгруппы железа (железо, рутений, осмий), элементы подгруппы кобальта (кобальт, родий, иридий) и элементы подгруппы никеля (никель, палладий, платина). [c.609]

    В ряду Не — Rn возрастает и устойчивость соединений включения. Так, температура, при которой упругость диссоциации клатратов Аг-бНаО, Кг-бНаО и Хе-бНаО достигает одной атмосферы, соответственно равна —43, —28 и —4°С. Наоборот, чтобы получить при 0°С гидрат ксенона, достаточно применить давление чуть больше атмосферного. Для получения гидратов криптона, аргона и неона необходимо давление соответственно в 14,5, 150 и 300 атм. Можно ожидать, что гидрат гелия удастся получить лишь под давлением порядка тысяч атмосфер. [c.613]

    Неон, аргон, криптон и ксенон кристаллизуются в кубической плотнейшей упаковке (гелий — в гексагональной плотнейшей упаковке). В твердых телах между атомами действуют лишь вандерваальсовы силы. [c.491]

    Кислород..... Аргон....... Двуокись углерода Гелий. ...... Неон........ 75,60 23,10 1,286 0,046 0,00007 0,0012 78,08 20,95 0,9325 0,030 0,0005 0,0018 Криптон..... Ксенон. .... Водород. .... 0,0003 0,0004 0,000108 0,000008 1 10-0 б 10- - 0,00005 [c.101]

    Главную подгруппу восьмой группы периодической системы составляют благородные газы — гелий, неон, аргон, криптон, ксенон и радон. Эти элементы характеризуются очень низкой химической активностью, что и дало основание назвать их благородными газами. Они лишь с трудом образуют соединения с другими элементами или веществами химические соединения гелия, неона и аргона не получены. Атомы благородных газов не соединены в молекулы, иначе говоря, их молекулы одноатомны. [c.492]

    Простые вещества. При обычных условиях благородные газы — бесцветные, без вкуса и запаха вещества с малой растворимостью в воде и органических растворителях. На живые существа они оказывают, подобно алкоголю, наркотическое действие, которое ослабляется из-за нх малой растворимости. Практически безвреден только гелий, заметно активен ксенон. Благородным газам свойственна более высокая электрическая проводимость, чем другим газам они ярко светятся при прохождении через них электрического разряда. Подвергнув высокому давлению замороженный ксенон, удалось превратить его в металл, проявляющий свойства сверхпроводника. [c.350]


    В периодической системе все элементы составляют 7 периодов. Первый период включает 2 элемента — водород и гелий, т. е. свойства повторяются через 2 элемента, затем дважды свойства повторяются через 8 элементов — второй и третий периоды от лития до неона и от натрия до аргона. Начиная с калия до криптона и с рубидия до ксенона свойства повторяются через 18 элементов — четвертый и пятый периоды. Шестой период содержит уже 32 элемента. Седьмой период не закончен. Таким образом, периодичность в повторении свойств химических элементов неодинакова. Три первых периода называются малыми, остальные — большими. [c.56]

    Благородные газы. К благородным газам относятся гелий, неон, аргон, криптон, ксенон и радон. [c.168]

    Благородные газы аргон, неон, криптон и ксенон используют для заполнения световых трубок и электрических лампочек. В частности, гелий применяют для получения низких температур, искусственного воздуха, используемого в медицине, наполнения аэростатов. [c.169]

    Из экспериментальных значений атомных функций распределения для многих моноатомных жидкостей вычислены координационные числа, которые несколько отличаются от аналогичных величин для твердой фазы. Для большинства простых веществ плавление сопровождается увеличением объема и координационные числа в жидкой фазе меньше, чем в кристаллической, У некоторых элементарных веществ (висмут, германий) плавление сопровождается уменьшением объема, В этом случае координационное число в жидкой фазе больше, чем Б кристалле. Сказанное подтверждается следующими данными, где сопоставлены (п ж) координационные числа в кристалле и в жидкой фазе для области температур, близкой к температуре плавления гелий (12 8,4), неон (12 8,6), аргон (12 10,5), ксенон (12 8,5), литий (14  [c.229]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Изотопия инертных газов. Несмотря на то что эманация радия (радон) и другие эманации (если они смешаны) нельзя разделить обычными химическими средствами, их легко получить в чистом виде из радиоэлементов, при распаде которых они образуются. Однако остальные инертные газы в природе встречаются в виде сжсей изотопов. Число изотопов в таких смесях значительно возрастает от гелия к ксенону. Гелий имеет только два изотопа, из которых более легкий (атомный вес 3) сопутствует более тяжелому (атомный вес 4) в исчезающе малых количествах (в отношении 1 10 ). Неон имеет три изотопа, так же как и аргон. Криптон состоит из шести, а ксенон из девяти изотопов (см. т. II, гл. 12). [c.132]

    В главную подгруппу VIII группы входят гелий Не, неон Ne, аргон Аг и элементы подгруппы криптона — криптон Кг, ксенон Хе, радон Rn. Их атомы имеют завершенную конфигурацию внешнего электронного слоя Is (Не) и ns np . [c.494]

    Современные схемы синтеза аммиака — циркуляционные, т. е. часть азотоводородной смеси непрерывно превращается в колонне синтеза в аммиак, который и выводится из установки. В циркуляционных газах растет содержание инертных примесей — аргона, гелия, криптона, ксенона, что снижает скорость реакции, а следовательно, и технико-экономические показатели процесса. Поэтому часть циркуляционных, так называемых продувочных газов непрерывно выводится из цикла. В современных установках синтеза аммиака оптимальным считается 11— 13%-е содержание инертных примесей в циркуляционных газах, при этом расход продувочных газов, например на установке производительностью 1500 т ЫНз/сут составляет до 10 000 м /ч. Таким образом, с продувочными газами из цикла выводится (на [c.271]

    Неон используют в неоновых лампах, аргон — люминесцентных лампах дневного света. Криптоном наполняют лампы накаливания с целью уменьшения испарения и увеличения яркости свечения польфрамовои нити. Ксеноном заполняют кварцевые лампы высокого дазления, являющиеся наиболее мощными источниками света. Гелий и аргон пспользуют в газовых лазерах. [c.489]

    Атомы элементов главной подгруппы VUI группы периодической системы и нормальном состоянии не содержат непарных элек-тронов. Этим и объяснялась инертность этих элементов, т. е. неспособность их атомов к образованию химических соединений. Очевидно, что возбуждение атомов гелия и неона не может привести к появлению непарных электронов, соответственно, в первом и втором уровне их электронных оболочек. Однако у других элементов этой группы — аргона, криптона, ксенона и радона — благодаря наличию на нарул<ных уровнях их электронных оболочек свободных -орбиталей возбуждение может привести к появлению непарных электронов, причем число их может достигнуть восьми. С эт[1м, естественно, связана возможность образования этими элементами химических соединений, в которых валентность элементов может достигать восьми. В последние годы [c.46]

    Вещества, построенные из атомов инертных элементов, — благородные газы (гелий, неои, аргон, криптон, ксенон, радон). Характеризуются одноатомным состоянием, летучестью и электрической проводимостью особого рода, которая существенно отличается от металлической и может быть названа скользящей". В твердом состоянии образуют кристаллические решетки молекулярного типа (хотя в узлах их находятся атомы), отличающиеся крайней непрочностью. [c.111]

    Наиболее общими и распространенными видами сырья являются воздух и вода. Сухой воздух состоит из (объемное содержание) 78% N2, 21% О2, 0,94% Аг, 0,03% СО2, незначительных количеств водорода, метана, неона, гелия, криптона и ксенона. Кроме того, в воздухе имеются переменные количества водяных паров, пыли и газообразных загрязнений. Кислород воздуха широко используется для процессов окисления (например, топлива), азот воздуха — для синтеза аммиака, в качестве инертной среды в промышленности и в исследовательской работе и др. Воздух используют как хладагент при охлаждении воды (в градирр ях) и других жидкостей, а также газов в теплообменниках. Нагретый воздух применяют как теплоноситель для нагрева газов или жидкостей. [c.7]

    В природных газах, находящихся в толщах осадочных горных пород, кроме углеводородов встречаются также углекислый газ СО , азот N3, водород Н2, сероводород НаЗ, гелий Не, аргон Аг. Встречаются как небольшие примеси и некоторые другие газы. В садшх верхних слоях горных пород часто присутствует и атмосферный воздух, который, как известно, состоит из азота (78,08%), кислорода (20,94%), аргона (0,93%) с примесью углекислого газа (0,033%), благородных газов (гелия, неона, криптона, ксенона) и некоторых других. [c.234]

    Помимо азота и кислорода воздух содержит редкие газы — аргон, неон, гелий, криптон, ксенон — и являюгся источником для получения этих газов в промышленных масштабах [71]. [c.427]

    По-видимому, в какой-то степени так же, как для серы и хлора объясняются переменные валентности, можно объяснить возможность образования химических связей и наблюдаемые валентности у ксенона. По сравнению с атомами гелия и неона, где на внешних оболочках нет неспаренных электронов и вакантных орбиталей, у ксенона имеются вакантные орбитали и, следовательно, появляется возможность возбуждения (расспаривания) электронов на эти орбитали. Поскбльку у ксенона 8 электронов на внешней оболочке, при их расспаривании следует ожидать переменные четные валентности 2, 4, 6 и 8. В настоящее время соединения ксенона с такими валентностями получены. [c.77]


Смотреть страницы где упоминается термин Ксенон см Гелий: [c.102]    [c.179]    [c.171]    [c.668]    [c.141]    [c.40]    [c.208]    [c.58]    [c.108]    [c.475]   
Общая химия в формулах, определениях, схемах (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ксенон

Ксенон ксенон



© 2025 chem21.info Реклама на сайте