Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инертные газы изотопия

    На Земле аргон значительно более распространен, чем остальные инертные газы. Его объемная доля в земной атмосфере составляет (0,93 Уо). Он находится в виде смеси трех стабильных изотопов Аг (99,600%), з Аг (0,063%) и Аг (0,337%). Изотоп "Аг образуется в природных условиях при распаде изотопа К посредством электронного захвата из /С-слоя (т. е. 15-электрона калия)  [c.496]


    Методы низкотемпературной ректификации (см. разд. 5.3.1) обычно применяют для разделения смесей изотопов Н—О, В— В, —а также изотопов инертных газов — гелия, неона и аргона. [c.222]

    В данном случае возмущающим воздействием может быть введение в аппарат вместе с поступающим потоком какого-либо трассёра, не реагирующего химически со средой (например, изотопов, подкрашенного инертного газа или жидкого вещества, флуоресцирующих примесей и т. п.). При этом реакцию системы будем определять путем записи изменения во времени содержания трассёра в потоке, выходящем из аппарата. [c.242]

    В каждом семействе радиоактивных изотопов есть одно газообразное вещество остальные — твердые. Эти газообразные вещества называются актинон, радон и торон. Все они относятся к плеяде 86, следовательно, являются изотопами. Эту серию ныне принято обозначать символом Рп. Строение электронной оболочки у всех них таково 2) 8) 18)32) 18) 8. Следовательно, по строению электронной оболочки —это инертные газы. Так как наружная оболочка у них заполнена до 8, то силы Ван-дер-Ваальса между атомами (инертные газы не образуют молекул) настолько слабы, что переход в жидкое и твердое состояния возможен лишь при очень низкой температуре. [c.59]

    Помимо Рг—223, известны еще 6 его изотопов, но они менее устойчивы. Только 88% ядер радиоактивного изотопа <>К подвергаются Р -распаду с превращением в изотоп Са. Остальные 12% ядер претерпевают К-захват — особый вид радиоактивности, обусловленный захватом ядром электрона с ближайшего к ядру электронного уровня К. Процесс, протекающий по схеме Аг, приводит к образованию инертного газа аргона. За счет этого процесса идет образование природного изотопа аргона с массовым числом 40, являющегося продуктом вторичного происхождения. [c.231]

    Все атомы инертных газов, кроме радона, имеют устойчивые изотопы. Наиболее богат изотопами ксенон. [c.634]

    В качестве примера ниже приводятся данные по изотопному составу для инертных газов массовые числа отдельных стабильных изотопов и (в скобках) про. центное их содержание в природной смеси. [c.77]

    Ряд тория построен аналогично (табл. 25). Родоначальник ряда менее радиоактивен, чем уран. Как и в ряду урана, один из членов этого ряда представляет собой радиоактивный инертный газ (торон) с тем же атомным номером, что и радон (86), но с другим массовым числом (220) и иными константами радиоактивности. Заканчивается этот ряд стабильным изотопом свинца ю РЬ. Все члены этого ряда имеют массовые числа, делящиеся без остатка на 4. Общая формула ряда А = Ап. [c.401]


    Масс-спектральный метод. Сложные газовые смеси разделяют на составные части, подвергая их действию сильных электрических и магнитных полей. Разделение происходит в соответствии с атомными или молекулярными массами отдельных компонентов смеси. Метод применяют при исследовании смесей изотопов, смесей инертных газов или сложных смесей органических веществ. [c.34]

    Здесь т — у-эквивалент 1 мКи изотопа К — кратность ослабления излучения стенками и футеровкой коксовой весовой воронки т) — коэффициент, учитывающий повышение эффективности регистрации у-квантов при заполнении рабочей камеры инертным газом. [c.61]

    Вот почему с помощью этого метода осуществляют разделение стабильных изотопов средних и тяжелых элементов периодической системы. Этим методом достигнуто полное разделение изотопов углерода, азота, кислорода, хлора, инертных газов и урана. [c.43]

    Период полураспада (Т. д)- время, за которое количество нестабильных частиц уменьшается наполовину. П. п.— одна из основных характеристик радиоактивных изотопов, неустойчивых элементарных (фундаментальных) частиц. Периодическая система элементов Д. И. Менделеева — естественная система химических элементов. Расположив элементы в порядке возрастания атомных масс (весов) и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, выражающую открытый им периодический закон Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, стоят в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая таблица элементов Д. И. Менделеева позволяют установить взаимную связь между всеми известными химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. На основе закона и периодической системы Д. И. Менделеева найдены закономерности в свойствах химических соединений различных элементов, открыты новые элементы, получено много новых веществ. Периодичность в изменении свойств элементов обусловлена строением электронной оболочки атома, периодически изменяющейся по мере возрастания числа электронов, равного положительному заряду атомного ядра Z. Отсюда современная формулировка периодического закона свойства элементов, а также образованных ими простых и сложных соединений находятся в периодической зависимости от величин зарядов их атомных ядер (Z). Поэтому химические элементы в П. с. э. располагаются в порядке возрастания Z, что соответствует в целом их расположению по атомным массам, за исключением Аг—К, Со—N1, Те—I, Th—Ра, для которых эта закономерность нарушается, что связано с нх изотопным составом. В периодической системе все химические элементы подразделяются на группы и периоды. Каждая группа в свою очередь подразделяется на главную и побочную подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы главной и побочной подгрупп в каждой группе, как правило, обнаруживают между собой определенное химическое сходство главным образом в высших степенях окисления, которое, как правило, соответствует номеру группы. Периодом называют совокупность элементов, начинающуюся щелочным металлом и заканчивающуюся инертным газом (особый случай — первый период) каждый период содержит строго определенное число элементов. П. с. э. имеет 8 групп и 7 периодов (седьмой пока не завершен). [c.98]

    Ra ( 4= 1617 лет) — член радиоактивного ряда встречается во всех урановых рудах. Р. содержится также во многих природных водах. Изотоп — а-излучатель Ra-> Rn (образуется инертный газ радон). Р.—серебристобелый металл, по химическим свойствам сходен с барием в соединениях проявляет степень окисления +2. Соли Р. менее растворимы, чем соответствующие соли бария. Р. применяют как источник а-частиц для приготовления радий-бериллиевых источников нейтронов (бериллий испускает нейтроны при бомбардировке а-частицами), как v-источник при просвечивании металлических изделий в производстве светящихся красок, в медицине (радиотерапия, при лечении кожных заболеваний, рака). [c.110]

    Стронций и барий — мало распространенные элементы, их содержание в окружающей среде составляет несколько сотых процента. Бериллий относится к редким элементам, его распространенность еще в 100 раз ниже. Радий не имеет стабильных изотопов. Его долгоживущий ИЗОТОВ с периодом полураспада 1620 лет образуется в результате цепочки радиоактивных превращений, сопровождающих распад ядер урана. Поэтому радий сопутствует в природе урану. Радий претерпевает а-распад с образованием радиоактивного инертного газа радона с периодом полураспада около 4 дней  [c.137]

    Особое место среди электрических и магнитных методов занимают масс-спектральные. Подвергая действию сильных магнитных и электрических полей сложные газообразные смеси, разделяют их на отдельные компоненты в соотв етствии с атомным или молекулярным весом. Этот метод наиболее широко применяется в исследовании смесей изотопов и в анализе смесей инертных газов. [c.18]


    АРГОН (греч. argos — недеятельный) Аг — химический элемент VIII группы основной подгруппы 3-го периода периодической системы элементов Д. II. Менделеева п. и. 18, ат. м. 39,948. Вхо.дит в число инертных газов. Содержание в атмосфере 0,93 об.%. Открыт в 1894 г. Д. Рэлеем и У. Рамзаем. Бесцветный газ, без вкуса и запаха. Существует три изотопа А. Аг, зздг ц мдг. В природных условиях "Аг образуется при радиоактивном распаде Это ис- [c.30]

    НЕОН (Neon, от греч.— новый) Ne — химический элемент VIII группы 2-го периода периодической системы элемен тов Д. И. Менделеева, п. н. 10, ат. м 20,179, относится к инертным газам Открыт в 1898 г. У. Рамзаем и М. Тра версом. Природный Н. состоит из 3 ста бильных изотопов, известны 5 радио активных изотопов. Н.— одноатомный газ, не вступает в обычные химические реакции. Получен гидрат Ne oHjO и некоторые другие соединения, в которых связь осуществляется молекулярными силами. В промышленности Н. получают из воздуха. Н. применяется в электротехнике для наполнения ламп накаливания, газосветных и сигнальных ламп. Для Н, характерно красное свечение. Н. применяют также в различных электронных приборах, в вакуумной технике. [c.172]

    РАДОН (Radon) Rn — радиоактивный химический элемент VHI группы 6-го периода периодической системы элементов Д. И. Менделеева, п. н. 86, массовое число самого долгоживущего изотопа 222, относится к инертным газам. Р. открыт Ф. Дорном и Э. Резерфордом в 1900 г. Изотоп (см Эманация) (Т.д = [c.209]

    Получение и применение инертных газов. Инертные элементы в виде простых веществ — бесцветные газы. Запаха не имеют. Природные изотопы радона радиоактивны, остальные стабильны. Растворимость в воде 100 объемов воды при 0° и давлении в 760 лш растворяющегося газа растворяют приблизительно 1 объем гелия, 6 объемов аргона или 50 объемов радона. Эти данные показывают, что по мере повышения порядкового номера инертного элемента ван-дер-ваальсовы силы адгезионного характера возрастают. [c.542]

    Инертные газы полиизотопны. Например, у криптона 6 изотопов с массами (в порядке убывания процентного содержания в плеяде) 86, 84, 83, 82, 80 и 78. Особенно много изотопов у радона, их массовые числа 204, 206, 207, 208, 209, 210, 211, 212, 215, 216, 217, 218, 219, 220, 221, 222—16 изотопов. Период их полураспада колеблется от 10 сек (Rn ) до нескольких суток. Наиболее долгоживущий изотоп — с Тп = 3,8 суток. Все изотопы радона радио- [c.544]

    В древности воздух принимали за определенное химическое соединение. В конце XVIII в. Пристли и Лавуазье установили главные составные части, а Авогадро определил вес литра воздуха. Рэлей и Рамзай в 1894 г. установили присутствие в воздухе аргона, Рамзай и Траверс — других инертных газов, Резерфорд, Дорн, Гизель и Дебьерн — изотопов радона (1900—1902 гг.). [c.516]

    Бериллий — четвертый элемент периодической системы Д. И. Менделеева. Атомный вес 9,0122, электронная конфигурация Двухэлектронный внешний слой характерен для всех элементов II группы. Принадлежность бериллия к главной подгруппе определяется тем, что у него, как и у других элементов этой подгруппы, под внешними 5-электронами находится электронная оболочка инертного газа. Известен лишь один природный стабильный изотоп бериллия Ве, что отличает его от других четных элементов периодической системы. Есть также радиоактивные изотопы Ве, Ве, Ве, °Ве последний ( Ве) самый долгоживуш,ий (период полураспада 2,5-10 лет). [c.165]

    Для разделения водорода и дейтерия, а также изотопов инертных газов — гелия, неона и аргона — до настоящего врелшни применяют метод низкотемпературной ректификации (см. главу. 5.31). Используя некоторое различие в упругостях паров сж1г-/кенных газов, посредством низкотемпературной ректификации можно получить значительное обогащение. В табл. 41 приведены [c.247]

    Э. X. принято подразделять на металлы п неметаллы. К неметаллам относят 22 элемента — Н, В, С, Si, N, Р, As, О, S, Se, Те, га югены и инертные газы, к металлам — все остальные. В зависимости от того, какой электронный уровень — S, р, d или f содержит электроны в атомах данного Э. X. самой высокой знергии, различают s-, p-, d- и -элементы. К s-элементам относят Н, Не, а также металлы главных подгрупп I и П групп периодич. системы, к р-эле-ментам — элементы главных подгрупп III—VIII групп, к ( -элементам — металлы побочных подгрупп III—VIII групп (кроме лантаноидов и актиноидов, к-рые принадлежат к f-элементам). s- и р-Элементы наз. непереходными, d- и -элементы — переходными. Э. х., все изотопы к-рых радиоактивны, наз. редиоактивными к ним относятся Тс, Рт, Ро и все элементы с более высокими, чем у Ро, ат. номерами. [c.707]

    Химический свстав я формулы. В состав М. входят все стабильные и долгоживущие изотопы элементов периодич. системы, кроме инертных газов (хотя Аг и Не могут накапливаться в М, как продукты радиоактивного распада). Различают видообразующие элементы и элементы-примеси, содержание к-рых в М, составляет соотв, единицы-десятки [c.86]

    ЭМАНАЦИ0ННЫЙ МЕТОД, физ.-хим. метод исследования твердых тел, основанный на изучении их способности выделять (эманировать) в окружающую среду изотопы радиоактивного инертного газа радона (эманации). В изучаемый объект вводят пропиткой, соосаждением, сорбцией или др. путем микроколичество материнского радионуклида, при радиоактивном распаде к-рого образуются непосреяственно или в результате ядерных реакций изотопы Rn. Обычно материнскими нуклидами служат Ra или Th. При а-распаде Ra образуется Rn (Tj 3,823 сут) превращение [c.477]

    Криптон Кг (лат. krypton, от греч. kryptos—скрытый). К.—элемент VIH группы 4-го периода периодич. системы Д. И. Менделеева, п. н. 36, атомная масса 83,80, инертный газ. Выделен из воздуха в 1898 г. Получен ряд соединений К. с фтором (KrF4), фенолом, хлороформом и др. В промышленности К. получают из воздуха, применяют К. в электровакуумной технике для заполнения ламп накаливания, рекламных трубок (белый цвет). Изотоп Кг используют как радиоактивный индикатор. [c.73]

    Особый интерес представляет и.зменение изотопного состава гелия, который, как уже указывалось, был почти полностью потерян Землей вместе с другими инертными газами при ее образовании. Долгое время считали, что гелий в природе состоит исключительно из Не , пока в 1936 г. не был обнаружен изотоп Не . Содержание Не в атмосфере незначительно, так что отношение Не /Не равно 1,2 10 . Количество Не в газовых скважинах в десять раз меньше, а в гелии, выделенном из радиоактивных минералов, практически равно нулю. Однако в некоторых минералах, например сподумене (алюмосиликате лития), количество Не в десять раз больше, чем в атмосфере. Накопление его, по-види1 му, происходит в результате реакции [c.160]

    По содержанию космогенных изотопов можно оценить так называемый космический возраст метеоритов — время, которое прошло с момента их образования при развале астероида или какого-нибудь другого тела сравнительно больших размеров (в котором внутренние части экранированы от космического излучеш-гя) до момента падения на Землю, где интенсивность космического излучения очень мала. Все полученные в настоящее время данные показывают, что имеются существенные различия между космическим возрастом каменных и железных метеоритов. Для каменных метеоритов он колеблется от 5 до 500 млн. лет, для железных от 200 до 2000 млн. лет. Такое расхождение может свидетельствовать о распаде каменных метеоритов после их образования из астероидов или об утечке инертных газов из каменных метеоритов, космический возраст которых определяется в основном по изотопному составу. Для решения этого очень важного для космогонии всей Солнечной системы вопроса необходимо знать точные данные о сечениях образования отдельных космогенных изотопов при взаимодействии космических лучей различной энергии со всеми атомными ядрами, входящими в состав метеоритов. Они могут быть получены на современных ускорителях. [c.162]

    Благородный (инертный) газ, неметалл. Бесцветный, трудносжижаемый, затвердевает только под избыточным давлением. В природе находится в виде изотопа Не (с примесью изотопа Не). Содержание Не в воздухе 5 lO Vo (об.) Обладает сильной способностью проникать через стекло и металлическую фольгу. Плохо растворяется в воде, лучше — в бензоле, этаноле, толуоле Химически инертный не реагирует со всеми другими веществами (простыми и сложными), не образует (в отличие от других благородных газов) клатратов с водой и органическими растворителями. Возникает при радиоактивном распаде нуклида Получают из природных гелионосиых горючих газов (фракционная дистилляция при глубоком охлаждении). [c.279]

    Благородный (инертный) газ, неметалл. Самый распространенный в природе элемент VIIIA-группы. Бесцветный. В природе преобладает наиболее тяжелый изотоп Аг (с примесями Аг, Аг). Образуется при захвате орбитального электрона ядром нуклида в литосфере Земли. Содержание Аг в воздухе [c.280]

    С ростом промышленного производства ректификация получала все белее широкое распространение, особенно в технологии органических продуктов. Мощное развитие процесса ректификации связано с нефтеперерабатывающей промышленностыр. Постепенно ректификация завоевывала новые области применения. Она явилась основным промышленным методой разделения воздуха на кислород, азот и инертные газы,а также разделения и очистки других сжиженных газев. В последнее время ректификация успешно используется при разделении некоторых стабильных изотопов, для аналитических целей и в ряде других специальных областей. [c.62]

    Образующиеся продукты присоединения достаточно стабильны и могут быть выделены путем испарения метанола, что используется в одном радиохимическом методе определения нескольких активных ненасыщенных соединений [73]. В анализе этим методом иорцию дихлорэтана объемом 2 мл, содержащую 75—250 мкМ двойных связей, переносят в круглодонную мерную колбу емкостью 10 мл. Если определяемое соединение неизвестно, то в этой порции дихлорэтана должно содержаться не более 20 мг нелетучего органического материала. Через шаровое соединение колбу можно соединять с прибором для определения изотопа методом мокрого сжигания и количественного сбора СОг в ионизационной камере [74—77]. Для анализа в эту колбу добавляют 1 мл раствора ацетата ртути (И) в метаноле- С (150 мг/мл) и закрывают ее. Затем в течение 1 ч выжидают прохождения в колбе реакции при температуре 40°С и потоком инертного газа переносят дихлорэтан и избыток метанола в охлаждаемую ловушку непрореагировавший метанол удаляют под вакуумом при температуре 30—40 °С. К остатку в колбе добавляют 1,5 г смеси К2СГ2О7—КЮз и затем разлагают его, нагревая с 5 мл безводной смеси фосфорной и дымящей серной кислот. Образующуюся СОз собирают в ионизационной камере объемом 250 мл и измеряют его радиоактивность емкостным или лепестковым электрометром. Радиоактивность этого газа с поправкой на радиоактивность холостого раствора пропорциональна ненасыщенности пробы. Удельную радиоактивность метанола- С определяют тем же способом, преьратив его в / -нитробензоат. Результаты анализа типичных с оединений, к определению которых применим данный метод, при-1 л дены в табл. 7.11. [c.235]

    В лаборатории плазму обычно создают в электрическом поле, (Степень ионизации, которая может быть достигнута при термическом нагреве газа, недостаточно высока, хотя и можно получить высокоионизованную плазму низкой плотности и температуры при поверхностной ионизации). Взаимодействие приложенного электрического поля и газа, которое прн определенных условиях приводит к газовому разряду, в общем весьма сложно. Однако в отсутствие магнитного поля газовый разряд достаточно понятен и свойства плазмы могут быть рассчитаны. Более трудно получить надежную информацию о роли нейтральных частиц. Очевидно, что уровень работы в области плазменного разделения нзотопов прямо соответствует уровню понимания свойств плазмы. Разделение изотопов получено в газовых разрядах постоянного, переменного и импульсного токов. Разделение в нейтральном газе с использованием плазмы в качестве вспомогательной среды представляется более сложным подходом к решению задачи. Но поскольку нейтральные частицы всегда присутствуют в газовом разряде, подобные процессы могут происходить и в установках, рассчитанных на полностью ионизованную плазму. К настоящему времени большинство экспериментов выполнено на инертных газах. Исследовалась также урановая плазма была получена плазма высокой плотности в сильноточной дуге (урановую плазму низкой плотности можно получить путем поверхностной ионизации). [c.277]

    Образование вторичных газовых ореолов может быть вызвано самопроизвольным распадом атомов радиоактивных элементов. Конечными продуктами распада урана-238 являются изотоп радона-222, гелий-4. При /(-захвате образуются атомы аргоиа-40 за счет калия-40. Таким образом, вторичные ореолы инертных газов могут также служить объектом изучения прн [c.471]


Смотреть страницы где упоминается термин Инертные газы изотопия: [c.140]    [c.141]    [c.271]    [c.281]    [c.545]    [c.704]    [c.247]    [c.137]    [c.146]    [c.670]    [c.285]    [c.259]   
Курс неорганической химии (1963) -- [ c.147 ]

Курс неорганической химии (1972) -- [ c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Газы инертные

Инертный газ



© 2025 chem21.info Реклама на сайте