Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие окислители

    Установка огнепреградителей на трубопроводах особенно желательна в тех случаях, когда в технологическом оборудовании может образоваться смесь газообразного горючего с воздухом или другим окислителем. [c.222]

    Предотвращение образования горючей среды должно обеспечиваться регламентацией допустимой концентрации горючих газов, паров и (или) взвесей в воздухе, допустимой концентрации флегматизатора в воздухе, допустимой концентрации флегматизатора в горючем газе, паре или жидкости, допустимой концентрации кислорода или другого окислителя в газе, горючести обращающихся веществ, материалов, оборудования и конструкций. [c.17]


    В основе процессов горения, взрыва и детонации лежит реакция окисления, т. е. быстро протекающее соединение горючих веществ с кислородом воздуха (или другим окислителем), сопровождающееся значительным выделением тепла и излучением света. [c.35]

    Носителем кислорода в реакциях прямого окисления чаще всего служит воздух или любой другой окислитель. Реакция Клауса — реакция взаимодействия H2S и SO2  [c.190]

    Несомненно, что в подобных условиях можно использовать ряд других окислителей. Как было недавно показано [973, 1625], соединения типа Рейссерта при взаимодействии в бензольном растворе с системой 50%-ный НаОН/воздух дают продукты, указанные на схеме 3.250 с выходами соответственно 37—80 и 65—97%  [c.409]

    Стационарно установленные электрические машины применяют в зависимости от классов помещения. К классу В-1 относятся помещения, в которых выделяются горючие газы и пары, которые могут образовывать с воздухом или другими окислителями взрывоопасные смеси при нормальных режимах работы, например при [c.348]

    Подобные аварии происходили при наливе хлорных железнодорожных цистерн и других сосудов, и все они были вызваны смешением несовместимых продуктов. Такого рода аварии являются следствием неудовлетворительной подготовки цистерн под налив сжиженными газами и нарушений действующих правил и инструкций. При проведении сливо-наливных операций следует строго руководствоваться инструкциями по безопасной эксплуатации цистерн, контейнеров (бочек) и баллонов для жидкого хлора, аммиака и сжиженных углеводородных газов и др. Смешение несовместимых продуктов, приводящее к взрывам и пожарам, чаще наблюдается на транспортных емкостях, так как при транспортировке используется большое число емкостей. Чтобы исключить подобные аварии, запрещено применять цистерны, предназначенные для перевозки сжиженных углеводородов, под налив перекисью водорода и другими окислителями или несовместимыми продуктами. [c.190]

    Опасность взрыва в факельной системе, предназначенной для горючих газов, обусловлена также возможностью сброса в нее других окислителей и газов, которые могут взаимодействовать со сбрасываемым горючим газом. [c.201]

    Известны и другие случаи образования взрывоопасных продуктов при смешении в канализации перекисных соединений или других окислителей с горючими продуктами и наиболее часто с углеводородами. [c.252]

    Сильная поляризация наблюдается на металлах (платина, золото, ртуть), в растворах солей щелочных металлов, например на ртутном электроде, который опущен в 0,1 н. раствор хлористого калия, тщательно очищенный от кислорода и других окислителей. Ртуть практически не отдает своих ионов раствору, а отсутствие ионов ртути в растворе делает невозможным и выделение их на электроде. Выделение водорода из нейтрального раствора возможно лишь при значительном отрицательном потенциале электрода. Выделение калия из 0,1 н. раствора требует еще большего отрицательного потенциала (ф = —2,983 в). [c.612]


    А. Н. Фрумкин развил электрохимическую теорию коррозии металлов он показал, что указанные выше электрохимические реакции, обусловливающие коррозию (переход ионов металла в раствор и реакция восстановления водорода или другого окислителя — деполяризатора, например кислорода), могут протекать при одном и том же потенциале на одном и том же участке поверхности металла. Проведенные расчеты потенциала в согласии с опытом свидетельствуют о весьма малом различии между отдельными участками поверхности металла. [c.640]

    Большинство металлов при взаимодействии с кислородом воздуха или другими окислителями покрывается пленкой ок исла или другого соединения. [c.29]

    H.Fe " в комплексы (закомплексованность) в перечисленных сре-дах ]1одобные примеры можно привести и для других окислитель-но-Е осстановительных систем так, для пары [Fe( N)6P /[Fe( N)6l Е° 0,366 в, между тем как в 1 М H IO4 или в НС формальный потфщиал резко возрастает и становится равным-f 0,71 в. Это объясняется тем, что, хотя Н+ ионы в реакции окисления — восстановления не участвуют, они сильнее связывают ион [Fe( N)e] в H[Fe( N)6]3-, H2[Fe( N)6]2- вплоть до. H4[Fe( N)e], чем ионы [Fe( N)eP , так как H3[Fe( N)6] более сильно ионизирует, чем a[Fe( N)e]. [c.351]

    Нефтепродукты могут быть окислены не только непосредственным действием кислорода, но и другими окислителями, как, например, азотной кислотой, перманганатом, металлическими окислами и т. д. [c.91]

    Быстрый обрыв цепей по реакции пероксидных радикалов с фенолами и ароматическими аминами, как уже отмечалось, связан с тем, что R02- —активные окислители, а InH — восстановители. Однако в окисляющихся углеводородах ингибиторы приходят в контакт и с другими окислителями, прежде всего с кислородом и гидропероксидами. Реакции ингибитора с этими окислителями могут отразиться на кинетике ингибированного окисления и длительности тормозящего действия ингибитора. [c.111]

    Реакционная способность (химическое сродство) металлов и термодинамическая устойчивость продуктов химической коррозии металлов характеризуются изменением стандартных изобарноизотермических потенциалов AGf соответствующих реакций (например, окисления металлов кислородом или другим окислителем), отнесенным к 1 г-экв металла, т. е. AGf/mn (рис. 7 и 8). Более отрицательные значения AGf/mn указывают на более высокую реакционную способность (химическое сродство) металла и более высокую термодинамическую устойчивость продукта химической коррозии металла. [c.27]

    Такова же связь и у других окислителей, обладающих, аналогично кислороду, гораздо большим электронным сродством, чем [c.29]

    Различие в концентрации кислорода или других окислителей [c.190]

    Участки металла, соприкасающиеся с раствором с большей концентрацией кислорода или другого окислителя, являются катодами (рис. 132, э) [c.190]

    Гомополимер поступает в продажу под названием Гидрин 100, а сополимер с окисью этилена — под названием Гидрин 200 (с недавних пор Херклор X и Херклор Ц). По данным фирмы, эти типы гид-ринов должны обладать такой комбинацией свойств, какой до сих пор не было ни у одного из синтетических каучуков. По жаростойкости п сопротивлению действию озона и других окислителей Гидрин 100 и Гидрин 200 равны этилен-пропиленовым сополимерам. По мас-лостойкости они приближаются к нитрильному, каучуку, а по газопроницаемости соответствуют бутилкаучуку. [c.189]

    Адсорбция кислорода или другого окислителя сопровождается поглощением электронов из металла и образованием незаполненных электронами d-уровней в металле, что переводит его в пассивное состояние. Адсорбция водорода или другого восстановителя сопровождается отдачей металлу электронов и заполнением электронами -уровней, что переводит его в активное состояние. [c.309]

    Последняя реакция может быть проведена и в газовой фазе ее иногда применяют для получения серы. H2S реагируют также со многими другими окислителями, при его окислении в растворах образуется свободная сера или SO i например  [c.446]

    Известно, что связывание электрона на катоде всегда осуществляется тем или другим окислителем. Для обычных процессов коррозии в атмосферных условиях, в особенности при коррозии черных металлов (железа, стали), обычно электроны связываются кислородом кислородная деполяризация). Кислород воздуха, растворяясь в соприкасающейся с металлом водной среде, в частности в пленке влаги, может связывать электроны по реакции [c.456]

    Различие в концентрации кислорода или других окислителей. Участки, омываемые раствором с меньше концентрацией кислорода или окислителя, будут анодами [c.22]

    В качестве другого окислителя была предложена позже Грундма-ном [38] перекись водорода. [c.274]

    К асс В-1, К нему относятся установки, расположенные в зданиях, в которых выделяются горючие газы или пары в таком колич( стве и обладающие такими свойствами, что могут образовать с воздухом или другими окислителями взрывоопасные смесн ири нормальных недлительных режимах работы, наиример ири загрузке или разгрузке технологических аппаратов, хранении илн пе-реливапин легковоспламеняющихся и горючих жидкостей, находящихся в открытых сосудах. [c.261]


    Класс В-1а. К нему относятся установки, расио./южснные в зданггтх, в которых при нормальной эксплуатации взрывоопасные смеси горючих паров или газов с воздухом или другими окислителями не имеют места, а возможны лишь в результате аварий или неисправностей. [c.261]

    Фосфористая кислота окисляется до фосфорной галогенами, диоксидом азота и другими окислителями. Тригалиды окисляются галогенами до PHals, кислородом до POHalg и т. д. [c.371]

    Наибольшую опасность представляют собой смеси ацетилена с воздухом и кислородом. Пределы взрываемости смеси ацетилена с воздухом составляют 2,2—100% (об.), а смеси ацетилена с кислородом 2,5—100% (об.). Максимальная скорость распространения пламени при горении ацетилено-воздушной смеси и содержании ацетилена 9,4% (об.) составляет 1,69 м/с, а при горении ацетилено-кислородной смеси и содержании 25% (об.) ацетилена 13,3 м/с. Смесь ацетилена с хлором и другими окислителями может взрываться под воздействием источника света. Поэтому в промышленных условиях принимают меры, позволяющие избежать возможности образования смесей ацетилена с газами-окислителями. [c.22]

    Тетраоксид осмия довольно легко образуется при окислении осмия или его соединений кислородом, азотной кислотой и другими окислителями. OSO4 умеренно растворим в воде, но определенных соеди-h hhji при этом не образует. Кислотные свойства OSO4 проявляет [c.593]

    Гидриды ЭНз построены по типу флюорита (см. рис. 70, а) и име-ь)Т солеобразный характер. Они в большей мере напоминают ионные гидриды щелочноземельных металлов, а с гидридами d-элементов гмеют мало общего. Водородные соединения лантаноидов — химически весьма активные вещества, очень энергично взаимодействуют ( водой, кислородом, галогенами и другими окислителями. Особо реакционноспособны соединения типа ЭН3. [c.646]

    Взрывоопасной средой могут быть смеси веществ (газов, паров и пылей) с воздухом и другими окислителями (кислородом, озоном, хлором, оксидами азота и др.), способные к взрывчатому превращению, а также индивидуальные вещества, склонные к взрывному разложению (ацетилен, гидразин, аммиачная селитра и др.). [c.21]

    Являясь экзотермическим соединением, ацетилен в опеределен-ных условиях способен к взрывному разложению в отсутствие кислорода или других окислителей. При этом выделяется энергия (8,7 МДж/кг), которой достаточно, чтобы разогреть продукты реакции до 2800 °С. Ацетилен способен к самопроизвольному разложению при горении, взрыве, детонации и каскадном разложении. Конечное давление газов зависит от характера разложения. При взрыве скорость распространения пламени достигает нескольких метров в секунду, а конечное давление, являясь функцией развиваемой температуры, возрастает по сравнению с начальным в 8—12 раз. Давление детонационной волны до ее отражения от стенки (а также от торца, изгиба и т. д.) может увеличиться в 30 раз, а в отражаемой волне в 50-—100 раз. [c.20]

    Известны, например, сотни катализаторов конверсии углеводорода с водяным 1аром и другими окислителями. Одиако для подавляющего большинства катали-)аторов данного типа активным компонентом является никель. [c.5]

    Arnold-Mentzel for ozone реактив Арнольда — Менцеля на озон — бумажка, пропитанная насыщенным спиртовым раствором бензидина, окрашивающаяся озоном в коричневый цвет, а другими окислителями — в синий [c.402]

    Хролювую смесь и другие окислители, применяющиеся для нытья посуды, набирать в пипетки можно только при помощи резиновой груши. [c.60]

    Бауман (146) одновременно определяет н e r, я зщр] подобным же при( ром, но сера осаждается в растворе после подкисления азотной кислотой азотнокислым барием. После отфильтро-вывания его азотнокислым Серебром осаждают хлор. Само собой разумеется, что в таком случае бромноватистую щелочь приходится заменять другими окислителями, не содержащими ни серы,. ни галоидов. Эслинг (147) употребляет для этой цели титроваийый раствор соды, избыток которой оттитровывается по оковяании опыта (326), [c.209]

    Механизм, который предложили Кабрера и Мотт (]949 г.), исходит и из существования на металле образовавшейся в процессе хемосорбции кислорода пленки, в которой ионы и электроны движутся независимо друг от друга. При низких температурах диффузия ионов через пленку затруднена, в то время как электроны могут проходить через тонкий еще слой окисла либо благодаря термоионной эмиссии, либо, что более вероятно, вследствие туннельного эффекта (квантово-механического процесса, при котором для электронов с максимальной энергией, меньшей, чем это требуется для преодоления барьера, все же характерна конечная вероятность того, что они преодолеют этот барьер, т. е. пленку), обусловливающего высокую проводимость окисной пленки при низких температурах. При этом на поверхности раздела металл— окисел образуются катионы, и на поверхности раздела окисел— газ—анионы кислорода (или другого окислителя). Таким образом, внутри окисной пленки создается сильное электрическое поле, благодаря которому главным образом ионы и проникают через пленку, скорость роста которой определяется более медленным, т. е. более заторможенным, процессом. [c.48]

    В связи с этим к вентиляторам, устанавливаемым во взрывоопасных помещениях, предъявляются особые требования. В этих помещениях нельзя применять комбинированные алюминиевостальные вентиляторы, так как при соистирании алюминия и ржавого железа образуются искры, которые могут поджечь горючую смесь. Иногда на вентиляционных системах вытяжных шкафов взрывоопасны.х помещений устанавливают алюминиевые вентиляторы, проточная полость которых выполнена из алюминиевых сплавов. Однако и эти вентиляторы не всегда обеспечивают искробезопасность, и в процессе их эксплуатации необходимо принимать меры, исключающие попадание в проточную полость ржавчины и других окислителей. Это достигается путем установки фильтров, изготовления воздухопроводов из неискрящих материалов и других мероприятий. [c.55]

    Одно из принциниальных различий между этими двумя механизмами коррозии металлов заключается в том, что при электрохимической коррозии одновременно происходят два процесса окислительный (растворение металла на одном участке) и восстановительный (выделение катиона из раствора, восстановление кислорода и других окислителей на другом участке металла). Например, в результате растнорения цинка в серной кислоте образуются ионы цинка и выделяется газообразный водород при действии воды железо переходит в окисное или гидроокис-ное состояние и восстанавливается кислород с образованием гидроксильных ПОПОВ. При химической коррозии разрушение металлической пoвeJЗXнo ти осуществляется без разделения на отдельные стадии и, кроме того, продукты коррозии образуются непосредственно на тех участках поверхности металла, где происходит его разрушение. [c.6]


Смотреть страницы где упоминается термин Другие окислители: [c.208]    [c.490]    [c.452]    [c.213]    [c.73]    [c.180]    [c.15]    [c.537]    [c.549]    [c.161]    [c.198]   
Смотреть главы в:

Углублённый курс органической химии книга2 -> Другие окислители

Углублённый курс органической химии книга2 -> Другие окислители

Справочник по свойствам, методам анализа и очистке воды -> Другие окислители

Химический анализ -> Другие окислители

Химия свободных радикалов -> Другие окислители

Химический анализ -> Другие окислители




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие с перекисью водорода и другими окислителями

Действие других окислителей

Другие виды применения перекиси водорода как окислителя

Другие окислители и восстановители

Другие реагенты-окислители

Некоторые другие окислители и восстановители

Окисление другими окислителями

Окисление камфена другими окислителями

Окисление перекисью водорода, тетратионатом, иодом и другими окислителями

Окисление различными окислителями совместно с другими процессами

Окисление различными окислителями совместно с другими процессами или его производных

Окисление различными окислителями совместно с другими процессами или олефинов с образованием тиофена

Окисление различными окислителями совместно с другими процессами с сульфированием различных органических соединений

Окисление различными окислителями совместно с другими процессами толуола, бензойной кислоты

Окислитель

Определение пероксидных соединений в i присутствии других окислителей

Осмия четырехокись другие окислители

Отношение к другим окислителям

Очистка окислением кислородом воздуха, пероксидом водорода и другими окислителями

Разложение другими окислителями



© 2025 chem21.info Реклама на сайте