Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород как газ-носитель

    Было обнаружено, что при использовании в качестве газа-носителя инертного газа, такого, как аргон, активность катализатора, восстановленного перед началом опытов, сильно уменьшалась от пробы к пробе из-за удерживания кислорода на его поверхности. Уменьшить количество удерживаемого кислорода, а тем самым и увеличить активность катализатора можно, либо продувая катализатор аргоном в течение длительного времени, либо — что еще лучше — используя водород в качестве газа-носителя. Катализатор, окисленный до реакции, ведет себя почти так же, как и восстановленный катализатор, удерживающий кислород. Носитель из чистой окиси алюминия не удерживал кислород. По объемной скорости, пересчитанной для температуры и давления реактора, и по результатам измерений степени превращения исходного реагента авторы вычисляли значения энергий активации и константы скорости реакции первого порядка. [c.44]


    Сам Лавуазье не пошел до конца по тому пути, который он открыл и на который он так решительно вступил. В высказываниях Лавуазье сохранились остатки ложных и нецелесообразных взглядов, за искоренение которых он взялся. Так, несмотря на то, что он открыл решающее значение измерения веса для понимания химических явлений, особенно для изучения элементов и их соединений, он все же включил в свою таблицу элементов субстанции, свет и теплоту, веса которых он не мог определить. Полностью не освободился Лавуазье и от старого, идущего еще от алхимии, представления о том, что свойство вещества зависит от присутствия в последнем некоторого носителя этого свойства. Например, он считал кислород носителем кислотных свойств и построил на этом свою ошибочную кислородную теорию кислот. Это яркий пример того, как автор новой теории не может полностью освободиться от старой системы представлений, от привычки мышления, принадлежащей старой теории. [c.87]

    НО основной путь образования СО - реакция Будуара. Высокие скорости взаимодействия метана с кислородом в отсутствие О2 в газовой фазе указывают также на участие кислорода носителя. На поверхности в ИК-спектрах наблюдаются возможные промежуточные соединения [c.46]

    Наиболее вероятно образование связи между металлом и атомами кислорода сульфонильной группы (А). Возможна и координация а-атомов водорода сульфона с атомами кислорода носителя (В) и а-атомов углерода с атомами металла, а также образование комплекса за счет взаимодействия электронов атома металла с -орбиталью серы d d -связь) (D). В результате комплексообразования на поверхности катализатора может происходить ослабление и разрыв связей С—S в молекуле 3-тиолен-1,1-диоксида [22]. [c.258]

    Для этой цели используют современные процессы швелевания с циркуляцией газа, при которых продукты швелевания быстро выводят из печи. В качестве газа-носителя, который одновременно является и источником тепла, служат главным образом не содержащие кислорода газообразные продукты сгорания с температурой около 650°. Важными преимуществами подобных процессов швелевания являются равномерный подвод тепла к исходной шихте и сравнительно мягкие условия выделения смолы. Одновременно образуется легкогорючий кокс (пламенный кокс). Значительные трудности представляет полное отделение смолы швелевания из больших количеств циркулирующего газа. В настоящее время известны процессы, разработанные фирмами Лурги и Пинч [47]. [c.49]


    Носителем кислорода в реакциях прямого окисления чаще всего служит воздух или любой другой окислитель. Реакция Клауса — реакция взаимодействия H2S и SO2  [c.190]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    Вследствие низкой чувствительности аргона и азота по отношению к кислороду, азоту, метану, окиси углерода и этану, последние определяют на колонке, заполненной молекулярными ситами, с применением в качестве газа-носителя водорода. [c.254]

    В этих условиях наблюдались следующие реакции гидрогенолиз пентана с образованием метана, этана и бутана, изомеризация в изопентан и Сз-дегидроциклизация с образованием циклопентана. Влияние времени контакта на протекание реакций по названным направлениям представлено на рис. 13. Для циклизации наблюдается насыщение, что авторы объясняют достижением равновесия реакции изомеризации и гидрогенолиза не лимитируются равновесием. Показано, что увеличение температуры прогрева катализатора выще 200 °С ведет к уменьщению удельной поверхности металла, а прокаливание его при 700°С вызывает рост кристаллитов (от 0,7 до 15,0 нм). При обработке катализатора кислородом частицы металла подвергались поверхностному окислению и мигрировали по поверхности носителя, образуя крупные кристаллиты. Изменение дисперсности металла сильно влияло на скорость гидрогенолиза ( 1). Скорость изомеризации (Уг) гораздо меньше зависела от дисперсности металла и в определенном интервале мало снижалась при увеличении размера кристаллитов. Соответственно, отношение скоростей зависит от размера кри- [c.93]

    Время жизни кинетической цепи (т) определяется концентрацией носителя цепи ([/ 00 ] п случае окисления при высоком давлеиии кислорода) и скоростью инициирования (/ )  [c.290]

    Галоидирование. Катализаторы, наиболее часто применяющиеся для хлорирования металлическое железо, окись меди, бром, сера, иод, галоиды железа, сурьмы, олова, мышьяка, фосфора, алюминия и меди растительный и животный уголь, активированный боксит и другие глины. Большинство этих катализаторов является носителями галоидов. Так, Fe, Sb и Р в галоидных соединениях способны существовать в двух валентных состояниях в присутствии свободного хлора они поочередно присоединяют и отдают хлор в активной форме. Аналогично иод, бром и сера образуют с хлором неустойчивые соединения. Катализаторы броми-рования подобны катализаторам хлорирования. Для иодирования наилучшим ускорителем служит фосфор. Для проведения процесса фторирования катализатор не требуется. В присутствии кислорода галоидирование замедляется. [c.329]

    Никелевый катализатор, нанесенный на данный носитель, испытывали в процессе конверсии природного газа бухарского месторождения с паровоздушной смесью, обогащенной кислородом в соотношении СН4 Н2О 62 N2= = 1 1 0,6 0,9. Результаты опыта, продолжавшегося 150 часов, подтвердили высокую и стабильную его активность [c.93]

    Хемосорбция кислорода поверхностью катализатора осуществляется из потока газа-носителя гелия в адсорбере 1 при комнатной температуре. Для изготовления адсорбера используют трубку из нержавеющей стали с внутренним диаметром 4 мм. Перед началом измерений исследуемый компонент катализатора должен быть обязательно восстановлен в токе водорода до металлического состояния. Температура и продолжительность восстановления зависят от типа катализатора для никелевого— 350 °С, 3—4 ч, для платинового — 500 °С, 2 ч. [c.91]


    После установления комнатной температуры в адсорбере 1 и заданной скорости пропускания газа-носителя начинают пропускать в поток гелия отдельные порции (импульсы) кислорода с помощью крана-дозатора 14. Объем петли дозатора равен 0,155 см . [c.92]

    Гидрирование бензола проводят в микрореакторе 9. представляющим собой трубку диаметром 6 мм из нержавеющей стали. В его центре расположена термопара. Объем реактора составляет 1 мл. Для гидрирования используют газ-носитель водород. Для очистки водорода от возможных примесей кислорода и окиси углерода его пропускают через реактор 5 с восстановленным катали- [c.182]

    На втором этапе при температуре 350-480°С из катализатора выгорает основная масса кокса. При этом кокс, локализованный в области каталитического действия металла выгорает при температуре 375°С, а кокс носителя - при температуре 440-460°С. Платина катализирует окисление, реакция идёт с выделением тепла, поэтому на этой стадии важно не допустить перегрева слоя катализатора и спекания платины. С этой целью концентрация кислорода в циркулирующем инертном газе не должна превышать 1% об. [c.54]

    Элементарной структурной ячейкой силикатов является кремнекислородный тетраэдр такие тетраэдры могут образовывать циклические, цепные, листовые и трехмерные каркасные структуры. Часть атомов кремния способна замещаться алюминием, но при этом компенсация заряда требует введения дополнительных катионов, что приводит к усилению электростатического вклада в химическую связь кристалла. На примере силикатов иллюстрируются четыре из пяти типов связи, обсуждавшихся в данной главе ковалентная связь между атомами кремния и кислородом в тетраэдрах, вандерваальсовы силы между силикатными листами в тальке, ионное притяжение между заряженными листами и цепочками, а также водородные связи между молекулами воды и силикатными атомами кислорода в глинах. Если включить в этот перечень еще никелевые катализаторы на глиняном носителе, то мы охватим и пятый тип химической связи (металлический). [c.640]

    Фото радиационный эффект, приводящий к образованию дополнительного количества носителей тока определенного типа, может ускорять коррозию металлов в результате облегчения катодного процесса или образования окислов р-типа (на Си, N1, Ре), но может и замедлять коррозию металлов образованием окислов га-типа, снижая перенапряжение кислорода, т. е. облегчая протекание анодного процесса, не связанного с разрушением металла. Вообще влияние этого эффекта незначительно. [c.371]

    Окисление меркаптанов в водно-щелочной среде и испытание активности катализаторов этой реакции проводились при атмосферном давлении техническим кислородом (Ог = 99,5 % об.) в стеклянном аппарате периодического действия с турбинной мешалкой. Опыты по нанесению фталоцианинового катализатора на носитель и по демеркаптанизации дизельного топлива проводились в барботажной стеклянной колонке. Испытание катализаторов гидроочистки проводили на лабораторной и на действующих промышленных установках. [c.29]

    В зоне нагрева высушенные таблетки носителя постепенно нагреваются от 200 до 1740 °С за счет тепла отходящих дымовых газов из зоны прокалки и за счет тепла от сжигания смеси природного газа и воздуха, обогащенного кислородом, приготовленной в четырех горелках ГНП-2. Отбор дымовых газов производится через 12 отверстий на своде печи в данной зоне. Время нагрева таблеток носителя составляет 8 ч. [c.211]

    А. Лавуазье от суждения, идущего еще от алхимпи, о том, что свойство веп ества зависит от присутствия в нем какого-то носите-тя. Иапример, он считал кислород носителем кислотных свойств и построил на этом свою ошибочную кислородную теорию кислот. Это яркий пример того, как автору новой теории трудно полностью освободиться от прежней системы представлений. Переоценка старых учений и понятий редко заверпшется одним человеком. [c.103]

    Поглощение водорода и кислорода определяли на объемной адсорбционной установке с использованием манометра Мак Леода. Перед хемосорбционными измерениями катализаторы проходили тренировку, состоящую в обработке водородом при 490—5Ю°С и обезга-живании в течение 3 ч при 480—.500°С. При расчете величин хемосорбции Нз и Ог на платине учитывали поправку на физическую адсорбцию водорода и кислорода носителем. [c.130]

    Влияние природы хлорагента и условий хлорирования на изомеризующую активность катализатора. Взаимодействие хлорорганического соединения, например четыреххлористого углерода, с кислородсодержащими группами на поверхности оксида алюминия при 250—300 °С в среде газа-носителя выражается суммой химических реакщ1Й, приводящих к образованию фосгена, диоксида углерода, хлороводорода и воды. За счет замещения ионов кислорода на хлор масса катализатора при хлорировании увеличивается. [c.67]

    Полиэтилен получают разными методами. По основному методу полимеризация проводится при температуре 190 °С и давлении 1500 ат, катализатором служит кислород в количестве 100—200 частей на миллион. В другом процессе этилен растворяют в углеводороде в раствор добавляют катализатор СГ2О3 на алюмосиликатном носителе температура процесса 93—150 °С, давление от 7 до35ат. Суспензия содержит около 5% этилена и 0,5% катализатора. По-новому, недавно появившемуся методу этилен [c.333]

    Катализаторы конверсии бензиновых фракций с водяным паром, кислородом и двуокисью углерода. Процесс конверсии бензинов с кислородом осуществляется как в непрерывном (автотермическом), так и периодическом вариантах при очень высоких температурах (до 1000° С). Последнее обстоятельство является причиной того, что для этого процесса обычно рекомендуют никелевые катализаторы, нанесенные на огнеупорный носитель (см. табл. 31). В качестве такого носителя используется алюмомагниевая шпинель состава М А1204 (табл. 31, № 1 и 2). Пластифицирующим компонентом смеси порошков окислов металлов, направляемых на прессование, является стеарат магния. Пропитка готового носителя проводится расплавом нитрата никеля. При этом за одну пропитку в катализатор вводят 12% никеля (табл. 31, № 1). [c.50]

    Таким образом, на установке используются три газа— гелий, кислород и водород. Для подачи их в адсорбер с катализатором имеются регулирующие редукторы 2, вентили 3, фильтры 4 и реометры 5. Контактирующие с катализатором газы должны быть хорошо очищены и осушены. Для этого газ пропускают через поглотители колонки с никельхромовым катализатором 6 для до-жига кислорода в потоках гелия и водорода, адсорберы с окисью алюминия 7 и молекулярными ситами 8 для улавливания воды, колонку с платиновым катализатором 9 для очистки водорода от кислорода, адсорберы с аскаритом 10 и пятиокисью фосфора 11. Для периодической регенерации катализаторов и адсорбентов колонки 6—9 имеют электрический обогрев. На линии подачи газа носителя перед адсорбером установлены ртутный манометр 12 и четырехходовой кран 13. [c.91]

    Кислотность катализатора определяют по количеству адсорбированного им аммиака из потока гелия при 200—260 °С. Выбор аммиака в качестве адсорбата обусловлен небольшим размером его молекулы, устойчивостью при высоких температурах, простотой его дозировки в поток газа-носителя, подходящей константной диссоциации (р/( = 4,75), позволяющей определять не только сильные кислотные, но и слабые центры. При анализе используют высокотемпературный хроматограф марки Вилли-Гиде с детектором по теплопроводности и температурой термостатирования 260 С. Хроматограф снабжен системой блокировки для отключения его в случае неконтролируемого повышения температуры выше установленной. Схема установки показана на рис. 44. Гелий из баллона проходит систему очистки, состоящую из кварцевой колонки с окисью меди 5 для очистки от водорода и углеводородов при 600—700°С, колонки с никельхромовым катализатором 7 для очистки от кислорода, колонки с аскаритом 9 для поглощения двуокиси углерода и осушительных колонок с окисью [c.133]

    В соответствии с существующими предложениями процесс окисления кокса протекает через ряд стадий. Первая стадия - хемосорбция кислорода с образованием устойчивого поверхностного углерод-кислородного комплекса. Вторая стадия - разложение комплекса с образованием окиси и двуокиси углерода. Этот процесс может протекать с большой скоростью, при этом необходимо учитывать неравномерность горения кокса во времени. В первый момент времени температура катализатора резко возрастает вследствие быстрого окисления находящихся на поверхности кокса активных веществ, богатых водородом. Подскок температуры может достигать при этом 70-80°С. Перегревы отдельных зон гранулы катализатора зависят от характера распределения кокса по объёму частицы. При невысоком содержании кокса переферия гранулы закоксована гораздо сильнее ядра. При увеличении содержания кокса эта разница быстро уменьшается. Кроме такого, диффузного по своей природе, распределения кокса, имеет место и зональное его распределение - на металле и на носителе катализатора. [c.54]

    Редиспергирование платины, нанесённой на А12О3, можно объяснить исходя из того, что чистые металлы имеют значительно большее поверхностное натяжение, чем их оксиды. Поэтому кристаллы металла не смачивают поверхность носителя, но при окислении металла смачивание на границе раздела сильно увеличивается и Pt02 "растекается" по поверхности носителя, образуя дисперсную фазу. Однако, только мелкие кристаллиты платины (1-3 нм) способны окисляться кислородом при 500°С. Так как при 600°С образуются крупные кристаллиты, редиспергировать их трудно. [c.60]

    Подобным образом гидрируется "молодой" кокс на поверхности носителя за счёт спилловера водорода. Кроме того, при образовании кокса в каркас полициклических ядер карбоидов и в виде их концевых групп могут входить гетероатомы кислорода, серы и азота, значительная концентрация которых оказывает стимулирующее влияние в реакциях образования кокса. Таким образом, удаление этих веществ с поверхности катализатора будет оказывать ингибирующее влияние на коксообразование. [c.78]

    Полупроводимость возрастает или убывает, если при адсорбции образуются или соответственно уничтожаются носители зарядов. Так, водород (донор) понижает проводимость полупроводников р-типа (N 0, СГ2О3) и повышает проводимость полупроводников п-типа (2пО, 5г) [68], в то время как кислород (акцептор) производит противоположное действие [69]. [c.30]

    Для действующих аппаратов особенностью орощесса окисления коиса является нестационарный характер протекания его, так как содержание кокса на неорганических носителях (или уменьшение веса шарика кокса — теплоносителя) и кислорода в газовом потоке меняется по длине слоя и во времени. [c.95]

    Промышленный процесс окислительной демеркаптанизации топлив был разработан в 1960 году фирмой UOP (Universal Oil Produ tion) под названием Мерокс-демеркаптанизация и к 1991 году число работающих установок достигло 1450. В процессе Мерокс окисление меркаптанов проводится кислородом воздуха в щелочной среде в присутствии металлофталоцианиновых катализаторов. Катализатор окисления может быть нанесен на твердый стационарный носитель (активированный уголь), либо растворен или суспензирован в щелочном растворе [90,91,114-116.  [c.20]

    Опыты по нанесению катализатора на активированные угли, испытанию активности катализаторов и окислительной демеркаптанизации дизельного топлива проводили на установке непрерывного действия (рис.2.4). В качестве реактора используют стеклянную насадочную колонку (1) диаметром 20 мм и высотой 200 мм, снабжённую обратным холодильником и контактным термометром (2). Обогрев реактора осуществляют с помощью нихромовой спирали, регулирование температуры - контактным термометром и электронным реле (5) с точностью 0,5"С. В качестве носителей используют древесный уголь и активированные угли марок КАД-Д, АГ-3, АГ-5, СКТ, АР-3 в качестве катализатора - натриевые соли сульфофталоцианинов кобальта и полифталоцианина кобальта. Активированный уголь загружают в реактор одним слоем высотой 100 мм на пористую перегородку (10). Нанесение фталоцианина кобальта на активированные угли проводят путём циркуляции его 0,5 %-ного водного раствора через носитель при комнатной температуре. Подачу раствора катализатора и очищаемых углеводородов в реактор осуществляют перистальтическим дозировочным насосом (6), скорость подачи кислорода и воздуха в реактор измеряют ротаметром (8) и регулируют игольчатым вентилем. Через определённые промежутки времени в растворе определяют содержание фталоцианина кобальта на приборе ФЭК-56 по оптической плотности. [c.35]

    В настоящее время в общем газовом анализе часто применяют сжигание свободным кислородом в присутствии катализаторов. Из больного числа исследованных катализаторов наилучшие результаты получены с металлическими платиной и палладием. Пал.тгадий и платину применяют в виде проволочной спирали, впаянной в верхнюю часть стеклянной шшетки (рис. 4), или в осанчденнсм виде на носителях (асбест, активированный уголь, керамика), С лучшими образцами катализаторов этого типа [2,31 водород количественно окисляется при комнатной температуре, а метан сгорает при 400—500° С. [c.29]

    Указанное значение расхода газа-носителя для каждого отдельного прибора следует уточнить по хроматограмме воздуха. Необходимо подбирать такую скорость газа-носителя, чтобы подсчи-танн( о по хроматограмме соотношение кислорода и азота соответствовало истинному. [c.71]


Смотреть страницы где упоминается термин Кислород как газ-носитель: [c.95]    [c.126]    [c.37]    [c.73]    [c.46]    [c.73]    [c.67]    [c.97]    [c.241]    [c.312]    [c.313]    [c.47]    [c.61]    [c.332]   
Лабораторная техника органической химии (1966) -- [ c.493 ]




ПОИСК





Смотрите так же термины и статьи:

Газы-носители различные кислород

Иттрий, носитель кислорода

Кислород носители кислорода как катализаторы

Кислород см Аг в качестве газа-носителя

Лантан, носитель кислорода



© 2025 chem21.info Реклама на сайте