Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление другими окислителями

    Окисление другими окислителями..................................................................... [c.4]

    П1.2.12. Окисление другими окислителями [c.290]

    Окисление другими окислителями (кроме О3) Окисление водяным паром [c.811]

    Окисление другими окислителями (кроме Од) Окисление перекисью водорода  [c.852]

    Окисление другими окислителями  [c.441]

    Окисление другими окислителями (помимо Oj) [c.957]


    Окисление другими окислителями (помимо О2)  [c.1399]

    Ионы уранила могут служить на свету либо окислителями, либо сенсибилизаторами реакции окисления другими окислителями, в частности молекулярным кислородом ( автоокисление ). В связи с наложением этих двух явлений результаты фотохимических исследований в случае недостаточно тщательного удаления воздуха из системы часто оказываются весьма сомнительными. [c.219]

    Носителем кислорода в реакциях прямого окисления чаще всего служит воздух или любой другой окислитель. Реакция Клауса — реакция взаимодействия H2S и SO2  [c.190]

    Быстрый обрыв цепей по реакции пероксидных радикалов с фенолами и ароматическими аминами, как уже отмечалось, связан с тем, что R02- —активные окислители, а InH — восстановители. Однако в окисляющихся углеводородах ингибиторы приходят в контакт и с другими окислителями, прежде всего с кислородом и гидропероксидами. Реакции ингибитора с этими окислителями могут отразиться на кинетике ингибированного окисления и длительности тормозящего действия ингибитора. [c.111]

    Реакционная способность (химическое сродство) металлов и термодинамическая устойчивость продуктов химической коррозии металлов характеризуются изменением стандартных изобарноизотермических потенциалов AGf соответствующих реакций (например, окисления металлов кислородом или другим окислителем), отнесенным к 1 г-экв металла, т. е. AGf/mn (рис. 7 и 8). Более отрицательные значения AGf/mn указывают на более высокую реакционную способность (химическое сродство) металла и более высокую термодинамическую устойчивость продукта химической коррозии металла. [c.27]

    Последняя реакция может быть проведена и в газовой фазе ее иногда применяют для получения серы. H2S реагируют также со многими другими окислителями, при его окислении в растворах образуется свободная сера или SO i например  [c.446]

    В основе процессов горения, взрыва и детонации лежит реакция окисления, т. е. быстро протекающее соединение горючих веществ с кислородом воздуха (или другим окислителем), сопровождающееся значительным выделением тепла и излучением света. [c.35]

    Различные виды твердого топлива в той или иной степени реагируют с кислородом и другими окислителями в зависимости от их свойств и молекулярной структуры. Изучение процессов окисления углей и полученных при этом продуктов является одним из направлений исследования молекулярного строения твердого топлива. Кроме того, окисление углей и изменение их свойств при хранении в естественных условиях имеет большое практическое значение. [c.162]


    Работы Бона, Френсиса и Уилера, Фишера и Шрадера по окислению каменных углей перманганатом калия или кислородом в щелочной среде, озоном, азотной кислотой и другими окислителями легли в основу современных представлений о структуре углей. Из продуктов окисления эти авторы выделили и идентифицировали щавелевую, адипиновую, меллитовую, терефталевую, бензойную, бензолпентакарбоновые и другие подобные кислоты и таким образом доказали ароматический характер углей. [c.167]

    Данные по окислению воздухом и другими окислителями противоречивы по некоторым из них по лучают нафталин высокой чистоты [18], по другим — степень очистки невелика [19]. Промышленной реализации эти процессы не нашли. [c.286]

    I. Окисление сульфидов пероксидом водорода, органическими пероксидами, кислородом воздуха и некоторыми другими окислителями в гомогенной или гетерогенной системах с целью получе- [c.340]

    Сульфоксиды и сульфоны получают последовательным окислением сульфидов перекисью водорода, органическими перекисями, кислородом воздуха и другими окислителями (в гомогенной или в гетерогенной системе) по схемам [30, 31]  [c.56]

    Можно дать следующее обобщенное определение окислителя и восстановителя вещество, содержащее элемент, у которого в ходе реакции повышается степень окисления, называют восстановителем, а вещество, содержащее элемент, у которого понижается степень окисления, называют окислителем. Понижение и повышение степени окисления элементов происходят одновременно и обусловливают друг друга. [c.160]

    В химическом отношении церезины отличаются меньшей устойчивостью. Дымящаяся серная кислота даже при нагревании практически не действует на нормальный парафин, но почти полностью растворяет церезин, причем реакция идет очень глубоко, с раскислением серной кислоты до сернистого газа и с выделением углерода в виде так называемого сульфоугля. Хлорсульфоновая кислота действует подобным же образом. Азотная кислота и другие окислители также сильнее действуют на церезин, чем на парафин. При окислении воздухом церезин образует больше низкомолекулярных кислот, что следует объяснить действием окислителя на третичный атом углерода в изосоединении. Кроме того, нормальный парафин при окислении не образует изокислот, которые не раз находились при исследовании продуктов окисления церезина. Трудность отделения парафина от церезина не позволяет провести совершенно четкое различие между обоими типами углеводородов, и возможно, что многие авторы, работавшие с церезином и парафином, не имели в руках совершенно чистых образцов обоих типов углеводородов. [c.61]

    Процессами окисления — восстановления называются реакции, сопровождающиеся переносом одного или нескольких электронов от одного из реагентов (восстановителя) к другому (окислителю). [c.102]

    Тетраоксид осмия довольно легко образуется при окислении осмия или его соединений кислородом, азотной кислотой и другими окислителями. [c.631]

    Азотистая кислота и другие окислители растворяют осадок. Это объясняется окислением диметилглиоксима, причем продукты окисления образуют с никелем растворимые окрашенные соединения. [c.180]

    Для переведения Ре" в Ре + к раствору соли трехвалентного железа приливают избыток раствора соли двухвалентного хрома. Затем раствор взбалтывают в течение 3—5 мин. или оставляют стоять 10—15 мин. при этом двухвалентный хром полностью окисляется кислородом воздуха, в то время как двухвалентное железо в сильнокислом растворе по отношению к кислороду достаточно устойчиво. После окисления двухвалентного хрома двухвалентное железо титруют тем или другим окислителем. [c.367]

    Окислительно-восстановительные свойства галогенов зависят от электроотрицательности, энтальпии диссоциации и других факторов. С увеличением радиуса атомов окислительные свойства галогенов ослабевают. Поэтому легче всего окисляется ио-дид-ион, тогда как фторид-ион не может быть окислен обычными окислителями. [c.497]

    При обсуждении окислительно-восстановительных реакций принято считать вещество, вызывающее окисление, окислителем. Окислитель обладает повышенным сродством к электронам и вызывает окисление других веществ, отщепляя от них электроны. Поскольку окислитель присоединяет электроны, он восстанавливается. Аналогично вещество, которое вызывает восстановление, называется восстановителем. В реакции (19.1) НС]-это окислите.пь, а Fe-восстановитель. Вещество, восстанавливаемое в реакции, всегда является окислителем, а окисляемое вещество - восстановителем. [c.199]

    Для получения карбоновых кислот производных полициклических углеводородов, например, нафталинкарбоновых кислот из соответствующих им гомологов нафталина, удобным окислителем оказался водный раствор бихромата натрия при работе в автоклаве при 250 °С, выходы большей частью выше 90% [421]. Окисление другими окислителями, как известно, часто приводит в случае полициклических углеводородов к окислению ароматического ядра, не затрагивая алкильной группы, с образованием гомологов хинонов. [c.1805]


    H.Fe " в комплексы (закомплексованность) в перечисленных сре-дах ]1одобные примеры можно привести и для других окислитель-но-Е осстановительных систем так, для пары [Fe( N)6P /[Fe( N)6l Е° 0,366 в, между тем как в 1 М H IO4 или в НС формальный потфщиал резко возрастает и становится равным-f 0,71 в. Это объясняется тем, что, хотя Н+ ионы в реакции окисления — восстановления не участвуют, они сильнее связывают ион [Fe( N)e] в H[Fe( N)6]3-, H2[Fe( N)6]2- вплоть до. H4[Fe( N)e], чем ионы [Fe( N)eP , так как H3[Fe( N)6] более сильно ионизирует, чем a[Fe( N)e]. [c.351]

    Тетраоксид осмия довольно легко образуется при окислении осмия или его соединений кислородом, азотной кислотой и другими окислителями. OSO4 умеренно растворим в воде, но определенных соеди-h hhji при этом не образует. Кислотные свойства OSO4 проявляет [c.593]

    Интерес к результатам окисления каучука окислителями ограничен, так как из продуктов окисления выделены только простые кислоты — муравьиная, уксусная, щавелевая и левулиновая. Недавно благодаря применению нового метода выделения и идентификации кислот — хроматографического метода — были получены хорошие резул1,таты нри окислении полибутадиеновых каучуков перманганатом калия в кислой среде. Были исследованы полибутадиены следующих типов эмульсионные полимеры, полученные при 50 и —10°, и другие образцы, полученные при полимеризации в присутствии Ка и катализаторов типа Алфин . Раствор кислот, выделенных из продуктов окисления, фильтровался через колонну, наполненную силикагелем, затем проводилось вымывание [c.217]

    Окислительные агенты и техника безопасности в процессах окисления. Если в лабораторной технике и при тонком органическом синтезе нередко применяют такие окислительные агенты, как перманганаты (в щелочной, нейтральной или кислой среде), би-хроматы, хромовый ангидрид, пероксиды некоторых металлов (марганца, свинца, натрия), то в промышленности основного органического и нефтехимического синтеза стараются пользоваться более дешевыми окислителями и лишь в отдельных случаях при-меняк1т агенты, способные к реакциям, не выполнимым при помощи других окислителей. [c.353]

    Изменять способность металла адсорбировать ингибиторы можно, изменяя заряд поверхности поляризацией от внешнего источника тока и с помощью специальных добавок. В частности, сместить потенциал нулевого заряда в положительную сторону можно с помощью галогенид-ионов, сульфид-ионов, а также окислением поверхности металла кислородом или другим окислителем. Однако окисление поверхности оказывает неоднозначное влияние на адсорбцию органических веществ. На окисленной поверхности ингибиторы удерживаются лишь силами Ван-дер-Ваальса и не образуют хемосор-бированных слоев ингибитора с металлом. [c.91]

    Окисление другими реагентами. При применении в качестве окислителей хлора или брома в нейтральной или кислой среде конечным продуктом реакции является галоидангидрид сульфокислоты. Так, п-тиокрезол превращен в сульфобромид действием брома в уксуснокислом растворе [1003], повидимому, содержавшем некоторое количество воды. Аналогично идет взаимодействие хлора и брома с дитиогидрохиноном [1003]  [c.154]

    Парафины инертны к больщинству химических реагентов. Они окисляются азотной кислотой, кислородом воздуха (при 140 °С) и некоторыми другими окислителями с образованием различных жирных кислот, аналогичных жирным кислотам, содержащимся в жирах растительного и животного происхождения. Синтетические жирные кислоты, получаемые окислением парафина, применяют вместо жиров растительного и животного происхождения в парфюмерной промыишенности, при производстве смазок, моющих средств и других продуктов. [c.472]

    Среди окислительных трансформаций олефинов особое значение имеет превращение в эпоксиды. Для этой цели в промышленности используют каталитическое окисление кислородом, а в лаборатории — надкислотами, среди которых особенно эффективна л1-хлорпадбензойная кислота. Другие окислители, например КМпО, или OSO4, окисляют олефины с образованием вицинальных гликолей. [c.115]

    В качестве примера сырьевых материалов можно привести чугун, химическая энергия которого в зависимости от состава составляет 7500 кДж/кг и более. Если полностью исключить окисление железа, то химическая энергия примесей передельного чугуна не более 1900 кДж/кг. Коэффициент использования этой химической энергии в сталеплавильной ванне не превосходит Г1к.и.х 0,5, тогда тепловой эквивал т Qa м= = 700- -900 кДж/кг, поскольку углерод чугуна способен окисляться только до окиси углерода. Такое значение теплового эквивалента получается только при окислении примесей чугуна кислородом, при применении других окислителей (воздух, руда, агломерат) тепловой эквивалент будет соответственно ниже, поэтому, комбинируя при осуществлении технологического процесса окислители, возможно в широких пределах менять тепловые эквиваленты сырьевых материалов и топлива. [c.48]

    Окисление 5тлеводородов является наиболее распространенным методом получения кислородсодержахцих соединений. В качестве окислителя обычно используют кислород или другие окислители перекиси (водорода, бензоила, третбутила и т.д.), кислоты (азотная и др.), надкислоты (надуксусная и т.д.), окислы и соли. В принципе, конечными продуктами окисления являются двуокись углерода и вода, однако до стадии горения реакцию окисления доводят только в различных топках, двигателях или в процессах дожита газов. [c.46]

    Наиболее сильным окислителем в кислой среде является марганцево-кислый калий. Тем не менее опыт показывает, что нельзя ограничиться применением только одного этого рабочего раствора. Высокий окислительный потенциал системы Мп07/Мп "" (в кислой среде) является иногда недостатком, так как способствует образованию активных промежуточных продуктов в результате возникают сопряженные реакции окисления. Поэтому в ряде случаев вместо марганцевокислого калия удобнее пользоваться двухромовокислым калием (с дифениламином или фенилантраниловой кислотой в качестве индикатора) или ванадиевокислым аммонием. В других случаях реакция между определяемым веществом и ионом перманганата идет не стехиометрически. Так, в реакции со многими органическими веществами перманганат может, при длительном взаимодействии, окислить их полностью, например до СО и Н О. Однако реакция идет довольно медленно, а образование промежуточных стадий не имеет резкого ступенчатого характера. Поэтому при определении некоторых органических соединений вместо марганцевокислого калия применяют бромноваго-кислый калий, йод или другие окислители. Эти окислители имеют более низкий потенциал и окисление не идет так далеко, как при действии перманганата. Однако бром илн йод взаимодействуют с молекулами мног их органических веществ довольно быстро и в точных стехиометрических отношениях. Таким образом, ряд обстоятельств обусловливает необходимость применения различных окислителей в зависимости от конкретных условий. [c.365]

    Сильные восстановители, как двухлористое олово, мышьяковистокислый натрий и др., определяют прямым п трованием рабочим раствором йода подобно тому, как это выполняется посредством перманганата, бихролшта или других окислителей. Переход йода в йодид не связан с образованием каких-либо промежуточных продуктов окисления, поэтому различные побочные процессы наблюдаются редко. Если из растворов удален воздух, титрование обычно идет значительно точнее, чем при других методах. [c.401]

    Запись данных опыта. Описать наблюдаемое. Почему разбавленная и концентрированная Н2504 по-разному реагирует с цинком Какой атом и в какой степеяи окисления является окислителем в том и другом случае  [c.192]

    Механизм газовой коррозии связан с протеканием на поверхности раздела твердой и газообразной фаз двух сопряженных реакций окисления металла и восстановления газообр 13ного окислителя, причем в пространстве эти два процесса, как правило, не разделены. В этом же месте происходит и накопление продуктов реакции окисления. Для непрерывного осуществления реакции атомы и ионы металла, с одной стороны, и атомы или ионы кислорода или другого окислителя, с другой, диффундируют сквозь постепенно утолщающуюся пленку продуктов коррозии. В результате газовой коррозии на поверхности металла образуются соответствующие соединения оксиды, сульфиды и др. В зависимости от свойств образующихся продуктов может происходить торможение процесса окисления. [c.686]


Смотреть страницы где упоминается термин Окисление другими окислителями: [c.73]    [c.537]    [c.237]    [c.121]    [c.130]    [c.20]   
Смотреть главы в:

Химия фуроксанов Строение и синтез Изд.2 -> Окисление другими окислителями




ПОИСК





Смотрите так же термины и статьи:

Другие окислители

Окислитель



© 2025 chem21.info Реклама на сайте