Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные системы коагуляция

    Какой процесс называют коагуляцией Чем завершается процесс коагуляции Какими способами можно вызвать коагуляцию лиофобной коллоидной системы  [c.179]

    Л 219. Кодгуляция лиофобных золей. Важнейшим методом коагуляции лиофобных золей является прибавление к ним электролитов. При коагуляции уменьшение степени дисперсности может и не достигать уров ня, при котором наступает седиментация или выпадение осадка, и и помутнение, или, наконец, изменение цвета раствора. Однако ч сто процесс коагуляции приводит и к та.чим результатам. В этих случаях эффект коагуляции становится видимым простым глазо1 1, и эта стадия, или период, получила название стадии явной коагуляции, в отличие от стадии скрытой коагуляции, когда ее нельзя еще заметить по внешнему виду коллоидной системы. [c.520]


    Ряд исследователей считают, что коагуляция связана с преодолением энергетического барьера в результате сжатия диффузной части двойного слоя ионов [32] другие полагают, что коагуляция латексов электролитами происходит в основном за счет понижения растворимости ПАВ, стабилизующего латексные частицы (высаливание ПАВ) [33]. Степень ионизации молекул ПАВ в адсорбированном слое в значительной степени зависит от содержания электролита в водной фазе, от концентрации и природы адсорби->ованного ПАВ, от степени гидролиза мыла или от pH [34, 35]. Ломимо этого, степень заполнения поверхности латексных частиц адсорбированными ПАВ оказывает огромное влияние на агрегативную устойчивость этих коллоидных систем, особенно при заполнении поверхности более чем на 40—50% [36—38], что, по-видимому, связано с изменением энтропии коагуляции коллоидной системы. [c.256]

    Влияние pH. Характеристики динамических мембран в значительной степени зависят от pH обрабатываемых растворов. При изменении pH меняется ионообменная способность заряженных мембран, что отражается на степени задержания различных ионов. Например, мембраны, образованные полиакриловой кислотой, в щелочной среде обладают значительно большей селективностью по Na l и Na2S04, чем по Mg b, поскольку Mg2+ является многовалентным противоионом [98]. В кислой среде мембрана переходит в нейтральную форму и наблюдается противоположная картина. Влияние pH является существенным и по той причине, что большинство мембранообразующих добавок представляет собой коллоидные системы, а в зависимости от pH может наблюдаться изменение размера коллоидных частиц, их растворение или коагуляция. [c.89]

    Присутствие солей в полимеризационной смеси способствует агломерации частиц, а при высоких концентрациях приводит к коагуляции дисперсной системы, т. е. выполняет ту же функцию, что и в обычных коллоидных системах, изменяя структуру мицеллярных образований. [c.390]

    В средней части колонны идет процесс коагуляции асфальтенов. В нижней части происходит пептизация асфальтенов смолами с образованием новой коллоидной системы и выделение из дисперсионной среды масляных углеводородов за счет уплотнения коллоидной структуры асфальта. [c.40]

    Коллоидные системы довольно стабильны, в них действуют силы, препятствующие укрупнению мицелл. Однако золь может перейти в гель, т. е. такое состояние, в котором из коллоидного раствора выпадает коллоидно-растворенное вещество. Переход золя в гель называется коагуляцией. Коагуляция (осаждение) — процесс укрупнения мицелл, происходящий под действием броуновского движения она может быть вызвана повышением температуры или концентрации, разного рода механическими воздействиями, введением в данный золь других золей. Время (скорость) коагуляции может быть различным — от долей секунды, когда образование геля проходит практически моментально, до многих дней и недель. Скорость коагуляции определяет строения геля. [c.34]


    Вискозиметр Куэтта. Этот вискозиметр очень удобен для наблюдения за изменениями вязкости во времени. Такие изменения — частое явление в коллоидных системах, что может быть обусловлено, например, коагуляцией. Вискозиметр Куэтта состоит из цилиндра, подвешенного на тонкой упругой нити, к которой прикреплено зеркальце с помощью последнего определяется угол поворота. Указанный цилиндр концентрически опускается во внутрь другого цилиндрического сосуда, заполненного исследуемой жидкостью. Внешний цилиндр вращается с постоянной скоростью, и увлекаемая им жидкость поворачивает внутренний цилиндр до тех пор, пока торсионная сила не сравняется с силой трения. При этом угол поворота пропорционален вязкости жидкости. Сравнивая углы поворота внутреннего цилиндра для двух разных жидкостей при вращении внешнего цилиндра с постоянной скоростью, можно определить вязкость одной жидкости, если известна вязкость другой. [c.70]

    Дпс срг< тты, как правило, — поверхностно-активные соединения. Они препятствуют коагуляции и слипанию нерастворимых в топливе частиц в крупные агрегаты, способные к седиментации. Действие диспергентов аналогично действию пептизаторов в коллоидных системах. [c.324]

    В соответствии с представлениями о концентрированных коллоидных системах указанные сточные воды оказались агрегативно более устойчивыми, при очистке их методом коагуляции хлоридом магния возрастает расход коагулянта до 1,2—1,8 кг/м вод, что в 4—5 раз превышает расход хлорида магния для очистки разбавленных сточных вод, кроме того, эффективность очистки снижается. Выделяющийся при коагуляции осадок (18-25 %) имеет большую влажность (97,0-98,2 %) и трудно поддается обезвоживанию вследствие высокой концентрации сорбированного им ПВС. [c.99]

    Присадки, называемые диспергентами, выполняют в окисляющейся системе (топливо — продукты его окисления) в основном функции защитных коллоидов или пеп-тизаторов. Защитными коллоидами для растворов в углеводородной среде могут служить все поверхностно-активные вещества дифильной структуры [13] спирты, жирные кислоты и их соли, фенолы и их соли, амины и др. Действие защитных коллоидов усиливается с удлинением углеводородной цепи при полярной группе. Защитное действие лиофильных коллоидов по отношению к лиофобным объясняется адсорбционным взаимодействием их частиц. Концентрация добавляемого защитного коллоида имеет важное значение. При недостаточной концентрации или малой степени его дисперсности взаимодействие лиофильного и лиофобного коллоидов может привести к обратному результату — образованию крупных лиофобных агрегатов. Это придает неустойчивость коллоидной системе и повышенную чувствительность к внешним воздействиям (сенсибилизация), которая может, в свою очередь, привести к коагуляции и осаждению коллоидных частиц. [c.139]

    Коагуляция латексов и выделение из него каучука СКС происходит под воздействием смеси 25% -ного раствора хлорида натрия и 2%-ной серной кислоты. Этот коагулянт разрушает эмульгатор на поверхности капель каучука и нарушает стабильность коллоидной системы (эмульсии). [c.433]

    Анализ формулы (7) показывает, что для данного вида дисперсности коллоидной системы благоприятные условия для коагуляции создаются при повышенных значениях В и б. [c.57]

    Устойчивость коллоидной системы определяется балансом сил, действующих между отдельными ее частицами. К таким силам относятся силы сцепления и силы отталкивания (препятствующие коагуляции). Силы сцепления имеют ту же природу, что и межмолекулярные силы. Эти силы имеют свойство быстро возрастать при сближении частиц. Силы отталкивания — это, главным образом, электростатические силы. Поскольку частицы дисперсной фазы по своей природе одинаковы, все они могут получить заряд одного и тою же знака и будут отталкиваться, что будет препятствовать их сближению на расстояние действия сил сцепления. [c.32]

    Термодинамически неустойчивые системы могут быть до некоторых размеров частиц дисперсной фазы кинетически устойчивы. Потеря кинетической устойчивости приводит практически к разрушению коллоидной системы и превращению ее в качественно другую систему, например, грубую дисперсию. Возможно регулировать агрегативную и кинетическую устойчивость системы, воздействуя на процесс коагуляции частиц дисперсной фазы, например созданием на их поверхности защитных слоев путем введения различных добавок. Устойчивость коллоидных систем может изменятся также за счет формирования вокруг дисперсных частиц сольватных слоев из молекул растворителя. [c.24]

    Поэтому при малой скорости образования зародышей и быстром их росте образуется небольшое число крупных частиц, и наоборот, при большой скорости образования зародышей и медленном их росте получается коллоидная система с большим числом мелких частиц, разумеется, если условия подобраны так, что одновременно не происходит и интенсивной коагуляции частиц. [c.9]

    В коллоидных системах к этому добавляется еще эффект рассеяния света коллоидными частицами, наиболее значительный для лучей г риьигрй л.пинпй нплны. т. е. для синих и фиолетовых лучей. Этот фактор действует значительно слабее, чем избирательное поглощение колебаний с определенной длиной волны, однако влияние его все же заметно проявляется. Вследствие этого в отраженном (точнее говоря, в рассеянном) свете большинство бесцветных коллоидных растворов имеет синеватый оттенок, а в проходящем свете, соответственно, — оранжевый или красноватый, так как проходящий свет частично лишается синих и фиолетовых лучей. Если само вещество дисперсной фазы коллоида окрашено, то коллоидный раствор приобретает интенсивную окраску. Таковы, например, оранжевые золи сернистого мышьяка или темно-коричневые золи гидроокиси железа. При этом в некоторых случаях на цвет раствора оказывает влияние и степень дисперсности. Так, высокодисперсные золи золота окрашены в ярко-красный цвет при уменьшении степени дисперсности цвет их изменяется и становится темно-синим при коагуляции. [c.536]


    В нем участвуют только растворенные молекулы. По этой причине для коллоидных систем гораздо большее значение имеет непосредственное слипание частиц при соударениях. Этот процесс называется коагуляцией или флоккуляцией. Если дисперсная фаза золя жидкая или газообразная (эмульсин или пены), то процесс может продолжаться до слияния отдельных капель и пузырьков, т. е. до коалесценции. Любое соединение частиц, наступающее при коагуляции, приводит к изменению состояния коллоидной системы и в этом смысле нарушает ее устойчивость. Вот почему Песков, говоря об агрегативной устойчивости коллоидных систем, подразумевал под этим отсутствие коагуляции. Если процесс агрегации частиц, связанный с коагуляцией золя, происходит в достаточно высокой степени, то система теряет свою устойчивость по отношению к действию сил тяжести и коллоидные частицы седиментируют. [c.193]

    Коагулирующее действие электролита. Все электролиты вызывают коагуляцию. Вещество, коагулирующее дисперсную фазу коллоидной системы, называется коагулянтом, а ион, вызывающий этой процесс,— коагулятором. [c.85]

    При разбавлении коллоидной системы технической водой, содержащей электролиты, коагуляция системы может произойти и под действием электролитов. При выпаривании протекает процесс концентрирования золя, что приводит систему в неустойчивое состояние. [c.89]

    Агрегативная устойчивость выражает собой способность кол лоидной системы сохранять свою стедедь дисперсности. Arpera тивная устойчивость (в отнощении коагуляции) обусловлена на личием у частиц дисперсной фазы электрического заряда и соль ватной (в частном случае — гидратной) оболочки. В сравнительно устойчивых коллоидных системах частицы дисперсной фазы, в ре зультате взаимодействия с молекулами или ионами окружающей среды, обычно приобретают электрические заряды, различные по величине, но одинаковые по знаку для всех частиц дисперсной фазы в данной системе. Это легко обнаружить при действии [c.509]

    Высокая устойчивость коллоидной системы сточных вод позволила предположить, что наличие в воде ПВС, содержащего 10-12 % ацетатных [рунп, приводит к стабилизации системы. Защитное действие раствора ПВС проверяли путем определения порога коагуляции золя Ре(ОН)з. Строение мицеллы может быть выражено следующим образом  [c.98]

    Мы уже говорили о том, что агрегативная неустойчивость — специфическая особенность коллоидных систем. Это свойство коллоидных систем имеет большое практическое значение. Не будет преувеличением сказать, что основной задачей технолога производственного процесса, в котором имеют место коллоидные системы, является либо поддержание агрегативной устойчивости системы, либо, наоборот, обеспечение известных условий коагуляции. [c.18]

    Рассмотрим агрегатную форму процесса кристаллизации парафинов. Явление агрегатной кристаллизации наблюдается в основном для высококипящих мелкокристаллических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Высококипящие высокомолекулярные парафины дают при кристаллизации весьма мелкую кристаллическую структуру. По величине образуюпщеся кристаллики парафина приближаются, особенно для многих тяжелых продуктов остаточного происхождения, к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кристалликов парафина, проявляют ряд свойств, присущих коллоидным системам, — нанример аномалию вязкости, дают явления, аналогичные гелеобразованию, и др. К числу таких свойств относится способность микрокристаллической взвеси собираться нри определенных условиях в скопления или агрегаты, как это происходит нри коагуляции коллоидных растворов. Одной из причин такой коагуляции (точнее агрегации) является выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих ч оединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют такж . и электростатические явления. [c.74]

    Полученные данные подтверждают возможность распространения физической теории на первую стадию коагуляции латексов электролитами. Константа сил ван-дер-ваальсова притяжения частиц в этой коллоидной системе, как следует из полученных [28— 30] данных, зависит ог степени насыщенности адсорбционных оболочек до состояния их, близкого к насыщению [41]. [c.257]

    Вьпие ( 18 этого раздела) было указано, что все гетерогенные дпсперсиыс системы являются неустойчивыми. В агрегативном отношении особенно неустойчивыми являются тонкодисперсные, т. е. коллоидные системы. Одиако на практике встречаются относительные устойчивые коллоидные системы, что обусловлено наличием электрического заряда у коллоидных частиц. Будучи одноименно заряжены, коллоидные частицы при сближении отталкиваются друг от друга и, следовательно, коагуляция в такой коллоидной системе не происходит. [c.194]

    Устойчивость КОЛЛОИДНОЙ системы может быть утрачена в результате нейтрализации электрического заряда частиц дисперсной фазы. Эта нейтрализация может быть достигнута при введении в коллоидную систему электролитов. Ионы введенного электролита нейтрализуют заряды противоположного знака, находящиеся иа поверхности коллоидной частицы. Нейтрализующее действие ионов усиливается с увеличением заряда ионов, В результате происшед-щсй нейтрализации зарядов коллоидные частицы снова получают способность коагулировать. Таким образом введение в коллоидную систему электролита устраняет препятствие коагуляции, которое 0бус.)10влен0 электрическими зарядами частиц дисперсной фазы. [c.195]

    Некоторыми исследователями сделан вывод о возможности стабилизации эмульсий ненасыщенными слоями стабилизатора, представляющими собой подобие двумерного газа из ориентированных дифильных молекул. Ненасыиденность таких слоев, имеющая место и в латексных системах дала повод в данном случае усомниться в стабилизирующем действии структурно-механического фактора, тем более, что проведенные измерения не показали наличия структурной и даже просто повышенной вязкости оболочек из поверхностно-активных веществ на межфазной границе. Кроме того, показано, что стабильные эмульсии могут быть получены при помощи эмульгаторов (некаль, триэтаноламин), заведомо не способных давать механически прочные адсорбционные пленки. И, наконец, если бы устойчивость эмульсий обуславливалась только структурно-механическим фактором, невозможно было бы наблюдаемое в ряде экспериментов соблюдение известного правила электролитной коагуляции Шульце—Гарди. С. М. Леви и О. К. Смирновым обнаружено отсутствие в широких пределах связи между длиной углеводородного радикала молекулы эмульгатора и стабильностью коллоидной системы, что также говорит против объяснения устойчивости эмульсий только образованием на поверхности глобул механически прочного адсорбционного слоя. [c.12]

    Типично лиофобные коллоидные системы при коагуляции и выделении дисперсной фазы образуют осадки, порошкообразные по структуре и не содержаигне значительных количеств дисперсионной среды, Эти осадки, как правило, уже не могут обратно перейти в состояние золя. Таким образом лиофобные золи характеризуются в большинстве случаев необратимостью. [c.195]

    Процесс образования гелей является, как указано выше, одним из видов коагуляции. Образовакпс гелей мелеет быть вызвано различными причинами — действием электролитов, изменением температуры и др. Некоторые лиофильные коллоидные системы застудневают при низкой температуре и разжижаются при высокой, другие— наоборот. Многие коллоидные системы способны застудневать дах е при очень малых концентрациях дисперсной фазы. [c.198]

    Явление агрегатной кристаллизации наблюдается в основном у высококипящих мелкокристалл ических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Как уже отмечалось выше, высококипящие высокомолекулярные парафины образуют при кристаллизации мелкую кристаллическую структуру. По величине образующиеся кристаллики парафина приближаются (особенно для многих тяжелых продуктов остаточного происхождения) к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кргисталликов парафина, характеризуются некоторыми свойствами, присущими коллоидным системам. Например они проявляют аномалию вязкости, способны к явлениям, аналогичным гелеобразованию, и др. К таким свойствам относится и способность микрокристаллической взвеси образовывать в определенных условиях агрегаты, как это происходит при коагуляции коллоидных растворов. Одна из причин такой агрегации — выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих соединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют и электростатические явления. [c.93]

    Следует подчеркнуть всю условность термина коллоидная химия . Коллоидные системы представляют собою системы, содержащие в виде дисперсных частиц не молекулы, а агрегаты молекул. Наиболее типичный процесс для коллоидных систем — коагуляция сводится к слипанию этих агрегатов в еще более крупные под действием межмолекулярных а не химических сил. Другие процессы, характер[ьГё для коллоидных систем (физическая адсорбция, электрофорез и т. д.), также являются в основном физическими или физико-химическими. Лишь при взаимодействии коагулятора со стабилизатором (веществом, находящимся в виде адсорбционного слоя на поверхностн коллоидных частиц и [c.13]

    В настоящее время отсутствует законченная теория расчета сил отталкивания за счет адсорбционных слоев, хотя некоторые работы Парфи-та указывают на возможность их учета для твердых частиц коллоидной системы. Думанским показано, что наступлению коагуляции дисперсий предшествует уменьшение количества связа1шой воды пептизация же [c.9]

    Высокая дисперсность асфальтенов создает избыток поверхностной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению на две фазы. При недостаточном стабилизирующем действии окружающей дисперсионной среды частицы асфальтенов предварительно ассоциируются, сцепляясь под действием молекулярных сил в агрегаты, что приводит к потере кинетической устойчивости системы. В значительной степени свойства 1ефтяных остатков как коллоидных систем зависят от степени дисперсности асфальтенов, а в случае крекинг-остатков также от степени дисперсности карбенов и карбоидов. В обычных условиях коллоидная система, состоящая из дисперсной фазы (асфальтены, механические примеси) и дисперсионной среды (высокомолекулярные углеводороды, смолы), термодинамически и кинетически неустойчива тем не менее, расслоение на фазы происходит медленно, что обусловлено в основном свойствами самой системы. Коагуляцию асфальтенов могут вызвать изменение состава дисперсионной среды, изменение температуры, механические воздействия и другие факторы. [c.56]

    Коагуляция лиофобных дисперсных систем может происходить в результате различных внешних воздействий, например при механичес1юм воздействии (ультразвука), действии электрического поля, при нагревании или замораживании системы. Коагуляция лиофобных золей может быть вызвана также их сильным разбавлением или концентрированием. Наиболее часто коагуляция дисперсных систем происходит при добавлении электролитов. Различают два типа электролитной коагуляции коллоидных систем 1) нейтрализационную, происходящую в результате снижения поверхностного потенциала частиц 2) конпен-трационную, протекающую вследствие сжатия диффузной части двойного электрического слоя (потенциал поверхности в этом случае не изменяется). [c.162]

    Введение электролитов снижает высоту потенциального баркфа (см. рис. 46), но при небольших концентрациях электролита энергетический барьер остается достаточно велик и коагуляции частиц не происходит. Агрегация наступает при введении определенного для данной системы количества электролита, соответствующего порогу коагуляции. Порог быстрой коагуляции Ск определяет количество электролита, необходимое для коагуляции единицы объема коллоидной системы г[ри полном исчезновении потенциального барьера АЕ. При сохранении небольшого потенциального барьера в системе протекает медленная коагуляция. [c.162]

    При всем многообразии форм и размеров частиц загустителя, образующихся при охлаждении, смеси компонентов, общим для них является способ формирования структурного каркаса. В процессе охлаждения коллоидного (мыльные смазки) или истинного (углеводородные смазки) раствора происходит кристаллизация загустителя с одновременным ростом и связыванием кристаллов (bo iokoh) друг с другом и образованием кристаллической сетки. В обычных коллоидных системах (с малым содержанием твердой фазы) частицы дисперсной фазы при столкновениях коагулируют и выпадают в осадок. Высокая концентрация дисперсной фазы в смазках препятствует коагуляции частиц, они формируют пространственный структурный каркас. Чем выше анизометричность (соотношение их длины и ширины) частиц загустителя, тем более прочную структуру они образуют. [c.356]

    Коллоидные системы обладают высокоразвитой по-перхностью раздела и, следовательно, большим избытком поверхностной энергии. Поэтому они термодинамически неустойчивы и имеют постоянную тенденцию к самопроизвольному уменьшению межфазной энергии. Это уменьшение в большинстве случаев происходит за счет сокращения суммарной поверхности частиц дисперсной фазы золей. Другими словами, если мицеллы золя приходят в тесное соприкосновение между собой, они соединяются в более крупные агрегаты. Этот процесс укрупнения коллоидных частиц в золях, происходящий под влиянием внешних воздействий, носит название коагуляции. [c.226]

    Коллоидные системы, как известно, обладают высокоразвитой поверхностью раздела и большим избытком свободной поверхностной энергии. Поэтому эти системы термодинамически неустойчивы и имеют тенденцию к самопроизвольному уменьшению межфазной энергии. Это в большинстве случаев происходит за счет уменьшения суммарной поверхности частиц дисперсной фазы золей. Если в силу создавшихся условий мицеллы золя приходят в тесное соприкосновение между собой, они соединяются в более крупные агрегаты. Это процесс коагуляции (от латинского oagulatio — свертывание, створаживание). [c.367]

    Несмотря на бесспорную связь между размером частиц и свойствами дисперсной системы, неверно все особенности дисперсной системы объяснять только дисперсностью, как это делал, например, немецкий ученый Во. Оствальд. Исходя из допущения о примате размера частиц над всеми остальными свойствами. Во. Оствальд даже предложил называть науку о коллоидных системах не коллоидной химией, а дисперсоидологией, т. е. учением о дисперсном состояние материи. Советскими учеными, и в первую очередь Н. П. Песковым, было указано, что такой взгляд является односторонним и представляет собою чисто механистический подход. Дисперсоидологйя, сводившая все только к уменьшению или увеличению размера частиц, совершенно не учитывала сложного, в большинстве случаев сопровождающегося адсорбцией, Взаимодействия частиц дисперсной фазы с дисперсионной средой, а также возможность чисто химических взаимодействий при коагуляции. А между тем эти явления играют весьма важную роль в коллоидных системах. Кроме того, дисперсоидология, рассматривая все дисперсные системы как качественно тождественные и отличающиеся только размером частиц, не может объяснить особые свойства, которыми обладают коллоидные системы и которые отличают их как от молекулярно-дисперсных, так и грубодисперсных систем. [c.23]


Смотреть страницы где упоминается термин Коллоидные системы коагуляция: [c.334]    [c.195]    [c.113]    [c.26]    [c.496]    [c.86]    [c.33]    [c.39]    [c.212]    [c.322]   
Физическая и коллоидная химия (1988) -- [ c.204 , c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Агрегативная устойчивость коллоидных систем. Коагуляция

Зашита коллоидных систем от коагуляции (стабилизация коллоидов)

Защита коллоидных систем от коагуляции

Изменение состояния коллоидных систем Коагуляция гидрофобных золей электролитами

Коагуляция

Коагуляция и стабилизация коллоидных систем Общие представления об устойчивости и коагуляции коллоидных систем

Коагуляция коллоидных систем под действием физических факторов

Коллоидные и коагуляция

Коллоидные растворы и другие дисперсные системы. Использование коллоидного графита в вакуумной технике. Устойчивость коллоидных растворов. Роль адсорбции. Заряд частиц. Электрокинетические явления. Использование их для приготовления оксидных катодов и в других целях. Понятие о гелях. Коагуляция коллоидов

Коллоидные системы коагуляция взаимная

Опыт 90. Коагуляция коллоидной системы гидрата окиси железа

Система к коагуляции

Системы коллоидные

Современная теория устойчивости и коагуляции коллоидных систем

Устойчивость и коагуляция коллоидных растворов и суспензий Кинетическая и агрегативная устойчивость дисперсных систем

Устойчивость и коагуляция коллоидных систем

Устойчивость и коагуляция смешанных коллоидных систем

Устойчивость коллоидных систем. Коагуляция и седиментация

Электролитная коагуляция................(XI J J Современная теория устойчивости и коагуляция коллоидных систем



© 2024 chem21.info Реклама на сайте