Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиофобные коагуляция

    В случае лиофобной коагуляции вместо трехмерных структур образуются сравнительно компактные хлопья, которые, оседая, дают объемистые осадки, лишь незначительно иммобилизующие дисперсионную среду. Водоотдача и отстой при этом резко возрастают. В зависимости от содержания твердой фазы, присутствующих реагентов, а также от некоторых других факторов, может иметь место коагуляционное разжижение или интенсивное загустевание. В табл. 5 показана разница в поведении буровых растворов при лиофильной и лиофобной коагуляции. [c.84]


    Поведение буровых растворов при лиофильной и лиофобной коагуляции [c.85]

    При переходе в студень частично структурированного золя (достаточно концентрированного раствора полимера) процесс межмолекулярного сцепления коллоидных частиц продолжается вплоть до образования общей, но не компактной, а рыхлой дисперсной структуры В виде единого агрегата—сплошной структурной сетки (более или менее общего жесткого каркаса ). Вследствие лиофильности вещества дисперсной фазы весь объем растворителя (дисперсионной среды) полностью удерживается в таком каркасе, а система в целом не только не расслаивается, как это происходит при коацервации и при лиофобной коагуляции, а становится еще более стойкой во времени и более прочной по отношению к механическим воздействиям. [c.228]

    Энергия двойного электрического слоя, как следует из теории ДЛФО, играет первостепенную роль применительно к стабильности и коагуляции дисперсных систем. Так, раствор любой присадки в масле является олеофильным коллоидом, в котором плотность заряда значительно ниже, чем в лиофобных коллоидах. Снижение плотности заряда в масле сопровождается уменьшением диэлектрической проницаемости, что приводит к образованию более проч- [c.216]

    Коагуляция лиофобных золей [c.521]

    Коагуляция лиофобных золей 523 [c.523]

    Значительный вклад в теорию электролитной коагуляции лиофобных золей внесли работы Глазмана с сотрудниками. Ими изучен вопрос коагуляции дисперсных систем под действием смеси электролитов, [c.13]

    Присадки, называемые диспергентами, выполняют в окисляющейся системе (топливо — продукты его окисления) в основном функции защитных коллоидов или пеп-тизаторов. Защитными коллоидами для растворов в углеводородной среде могут служить все поверхностно-активные вещества дифильной структуры [13] спирты, жирные кислоты и их соли, фенолы и их соли, амины и др. Действие защитных коллоидов усиливается с удлинением углеводородной цепи при полярной группе. Защитное действие лиофильных коллоидов по отношению к лиофобным объясняется адсорбционным взаимодействием их частиц. Концентрация добавляемого защитного коллоида имеет важное значение. При недостаточной концентрации или малой степени его дисперсности взаимодействие лиофильного и лиофобного коллоидов может привести к обратному результату — образованию крупных лиофобных агрегатов. Это придает неустойчивость коллоидной системе и повышенную чувствительность к внешним воздействиям (сенсибилизация), которая может, в свою очередь, привести к коагуляции и осаждению коллоидных частиц. [c.139]


    Коагуляция является процессом, проходящим в термодинамически неустойчивых (лиофобных) дисперсных системах. Об агрегативной устойчивости таких систем судят по скорости коагуляции. Скорость коагуляции в дисперсных системах может быть самой различной. Некоторые системы коагулируют в течение нескольких секунд после их получения, а другие — устойчивы в течение суток, месяцев, а иногда и лет. [c.278]

    И КОАГУЛЯЦИИ ЛИОФОБНЫХ ДИСПЕРСНЫХ СИСТЕМ [c.325]

    Стабилизацию лиофобных дисперсных систем с помощью лиофильных коллоидов (в первую очередь, ВМС) называют защитным действием стабилизаторов (коллоидной защитой). Зигмонди предложил количественно оценивать защитное действие стабилизатора в золотых числах . Золотым числом называется максимальная масса стабилизатора (в миллиграммах), которая предотвращает коагуляцию 10 мл золя золота (изменение окраски от красной до синей) при добавлении 1 мл 10%-ного раствора хлорида натрия. Таким образом, чем больше золотое число , тем меньше защитное действие стабилизатора. Напрпмер, желатина имеет очень малое золотое число (0,01), что свидетельствует о ее сильном защитном действии. Несколько больше золотое число у гуммиарабика (0,5), еще больше у картофельного крахмала (20). Иногда за стандарт выбирают вместо золя золота золи серебра ( серебряное число ), конго рубинового ( рубиновое число ) и др. [c.340]

    Лиофобные дисперсные системы характеризуются кинетической агрегативной устойчивостью, определяемой скоростью процесса коагуляции. Кинетика коагуляции описывается уравнением Смолуховского  [c.160]

    Какой процесс называют коагуляцией Чем завершается процесс коагуляции Какими способами можно вызвать коагуляцию лиофобной коллоидной системы  [c.179]

    Рассчитайте время половиной коагуляции, используя экспериментальные данные по изменению общего числа частиц при коагуляции лиофобной дисперсной системы в воде  [c.182]

    Лиофобные свойства асфальтенов проявляются особенно резко в низкокипящих фракциях бензина (содержащих метановые углеводороды), этиловом спирте, сложных эфирах и др. В присутствии этих веществ происходит коагуляция асфальтенов. Обратный переход асфальтенов в дисперсное состояние возможен при растворении их в ароматических углеводородах, хлороформе, в нефтяных смолах, которые вызывают пептизацию коагулированных асфальтенов. [c.88]

    НЫХ особенностей поведения тонких слоев, а также, и это особенно важно, для объяснения медленной коагуляции лиофобных коллоидов. Эти вопросы будут рассмотрены в гл. 6 и 7. [c.155]

    Параллелизм между влиянием электролитов на устойчивость гидрозолей и их влиянием на -потенциал наиболее отчетливо выражен в случае многовалентных и органических ионов, которые могут перезаряжать межфазную поверхность. В этом случае с повышением концентрации электролита устойчивость коллоида резко уменьшается и наступает быстрая коагуляция. Однако при еще более высоких концентрациях достигается вторая область устойчивости, связанная с тем, что вследствие перезарядки поверхности коллоид снова приобретает электрический заряд (но уже противоположного знака), который его стабилизирует. При достаточно высокой концентрации электролита -потенциал в любом случае уменьшается до нуля, и устойчивость коллоида пропадает. Подобное поведение лиофобных коллоидов подтверждает то решающее значение, которое имеют для их устойчивости электрические свойства поверхности частиц. [c.197]

    В табл. 6 и 7 представлены собранные Овербеком (см. [2]) значения Ссг, которые были получены разными авторами при коагуляции отрицательно и положительно заряженных золей . Отдельные результаты довольно сильно отличаются друг рт друга из-за относительного характера методов определения с г, но средние значения хорошо согласуются с (7.33). До недавнего времени данные, полученные при исследовании с г, были основным доказательством правильности созданной Дерягиным, Фервеем и Овербеком теории коагуляции лиофобных золей. [c.213]

    Такие опыты были проведены автором и сотрудниками на молекулярно-гладких шариках (г 1 мм) стеклянных, метилированных, покрытых производными целлюлозы и др. в средах разной полярности, от воды до углеводородов, включая и фторированные соединения. Табл. 1 охватывает крайние случаи, которые можно охарактеризовать как проявление полной лиофобности, отвечающее коагуляции в соответствующей высокодисперсной системе, и как проявление полной лиофильности (например, метилированное стекло в гептане), отвечающее пептизации и образованию устойчивого золя в соответствующей высокодисперсной системе. В табл. 2 [c.304]

    Вторым методом является стабилизация системы реагентами типа карбоксиметилцеллюлоза, щелочной крахмал, лигносульфонаты и и т. п., усиливающими гидрофилизацию и способствующими струк-турообразованию. Их модифицирующее действие сочетается со структурообразованием самого реагента. Образование структур усиливают добавки, форсирующие лиофильную коагуляцию (жидкого стекла, солей и т. п.). При этом важно сохранить баланс между гидрофилизирующим и коагуляционным действием с тем, чтобы не направить процесс по пути лиофобной коагуляции. [c.332]


    Следовательно в зависимости от дисперсности б, концентрации nIN, температуры граница лиофильности как некоторое критическое значение межфазной энергии а , соответствующее условию агрегативной устойчивости дисперсной системы, может лежать в очень широком интервале значений о (10 ч- ЮмДж/м ), что удается выразить численно и сопоставить с экспериментальными данными, В этой развиваемой нами системе представлений лиофильность (и как альтернатива — лиофобность) не есть свойство поверхности как таковой (и не есть, как правило, характеристика поведения отдельной частицы),— это понятие выступает как свойство системы, как одно из проявлений универсальной физико-химической закономерности — конкуренции потенциальной энергии сцепления частиц дисперсной фазы и кинетической энергии, связанной с их участием в тепловом движении. Вместе с тем, в основе развиваемой схемы лежит оценка глубины первичного (ближнего) потенциального минимума для индивидуального контакта, прежде всего, по отношению к величине кТ, и их сопоставление в широком интервале варьирования родственности среды и дисперсной фазы. При этом обнаруживается весь непрерывный спектр от лиофильности (самопроизвольного диспергирования, пептизации коагулята), когда щ составляет малые доли кТ, например, для гидро-фобизованных частиц диаметром 6=1- 10 м в жидком углеводороде, до совершенной лиофобности (коагуляции, с прочным закрепле- [c.44]

    Возможность проявления сил молекулярного сцепления между частицами, необходимых для образования сплошной пространственной сетки, значительно повышается при условии достаточно высокой дисперсности и при частицах анизодиаметри-ческой формы, т. е. с резко различными размерами по отдельным направлениям (пластинчатых или палочкообразных, вытянутых частицах). Предполагая для анизодиаметрических частиц различную толщину адсорбционного сольватного слоя и возможность его утоньшения и прорыва в местах наибольшей кривизны — углах и ребрах, можно прийти к заключению о наличии условий, благоприятствующих сцеплению и агрегированию частиц. В этих случаях достаточно весьма малоё объемное содержание дисперсной фазы- для того, чтобы частицы могли войти в соприкосновение друг с другом концами или ребрами и образовать сплошную- пространственную сетку, обладающую известной механической прочностью. Такой процесс часто называется лиофильной коагуляцией, чем подчеркивается коагуляционный механизм образования таких рыхлых скелетов струк--тур, в отличие от компактных структур, образующихся при лиофобной коагуляции, а также при осаждении первичных, не агрегированных частиц. [c.252]

    Лиофобные золи. Мы уже видели, что обязательными условиями устойчивости лиофобных золей являются очень зшшя размер частиц, наличие у них электричргких зарядов, одинаковых по знаку, и сольватация частиц. Первое предохраняет их от осе-даНИЯ, "второе и третье — от укрупнения в результате слипания, (коагуляции). Своим происхождением заряды коллоидных частиц обязаны адсорбционным процессам заряд появляется у частицы вследствие того, что частица данного коллоида пре имущее ственно (или избирательно) адсорбирует из раствора ионы того или иного вида в зависимости от природы коллоидного веш ества и от условий опыта. Чтобы выяснить ближе характер зтой адсорбции, обратимся прежде всего к результатам экспериментального изу- J чения структуры коллоидных растворов. [c.515]

    Л 219. Кодгуляция лиофобных золей. Важнейшим методом коагуляции лиофобных золей является прибавление к ним электролитов. При коагуляции уменьшение степени дисперсности может и не достигать уров ня, при котором наступает седиментация или выпадение осадка, и и помутнение, или, наконец, изменение цвета раствора. Однако ч сто процесс коагуляции приводит и к та.чим результатам. В этих случаях эффект коагуляции становится видимым простым глазо1 1, и эта стадия, или период, получила название стадии явной коагуляции, в отличие от стадии скрытой коагуляции, когда ее нельзя еще заметить по внешнему виду коллоидной системы. [c.520]

    У типично лиофобных золей (например, у золей сульфида мышьяка) область скрытой коагуляции обычно невелика, но она значительно более обширна у золей, обладающих некоторой лиофильностью, как, наЬример, у золей кремневой кислоты. [c.520]

    Коагуляцию золя можно вызвать прибавлением к нему другого золя, частицы которого заряжены противоположно первому. Это так называемая взаимная коагуляция лиофобных коллоидов. Для полной коагуляции в данном случае требуется соблюдать определенное соотнощение в количествах реагирующих растворов. Отклонения от этого соотношения в ту или другую сторону резко ослабляют коагуляцию, а при значительных отклонениях коагуляция вовсе не происходит. Синтез каолинита из гидрозолей АЬОз и Si02, проведенный в электродиализаторе, был описав недавно В. А. Каргиным. Такого рода процессы взаимной коагуляции происходят и в почвах. [c.523]

    Студни и гели. Большинство лиофильных золей и некоторые лиофобные золи в определенных условиях приобретают способность желатинироваться, т. е. превращаться в студнеобразные массы, получившие название студней или гелей. Процесс желатинирования является одним из видов коагуляции От обычной кoafyляции он отличается тем, что здесь не образуется осадка частиц коллоида, а вся масса коллоида, связывая растворитель, переходит в своеобразное полужидкое-полутвердое состояние. [c.524]

    Высокомолекулярные соединения и лиофильные коллоиды являются стабилизаторами по отношению к лиофобным золям. Так, если прибавить к раствору соли серебра небольшое количество желатина, белка (или некоторых продуктов распада его) и восстановить серебро до образования золя, то степень дисперсности коллоидного серебра в этих условиях получения оказывается более высокой и золь менее- подвержен влияниям факторов, вызывающих коагуляцию. Такой золь серебра можно путем выпаривания превратить в твердый продукт, который обладает способностью снова растворяться в воде, образуя золь. Вследствие защитного действия, которое в подобных случаях оказывают лиофильные коллоиды, повышая стабильность необратимых золей, их называют защитными коллоидами. При применении защитных коллоидов золи могут быть получены с более высокими концентрациями, чем обычна. Примером концентрираванного золя, получаемого с применением защитного коллоида, является медицинский препарат колларгол, содержащий более 70% серебра. [c.532]

    Типично лиофобные коллоидные системы при коагуляции и выделении дисперсной фазы образуют осадки, порошкообразные по структуре и не содержаигне значительных количеств дисперсионной среды, Эти осадки, как правило, уже не могут обратно перейти в состояние золя. Таким образом лиофобные золи характеризуются в большинстве случаев необратимостью. [c.195]

    Он показал, что при значительной вязкости системы нефтяные остатки приобретают свойства ньютоновской жидкости в лио-фильной среде прн более высоких температурах (180—200 °С), чем нефти. В случае лиофобной среды система расслаивается иа фазы. При добавлеиин в систему сольвентов (легких бензинов) создаются условия для расслоения нефтяных остатков при относительно низких температурах (40—150 °С) в результате достигаются оптимальные условия для коагуляции (деасфальтизации) [189]. [c.46]

    НДС с межфазным натяжением а>От относятся к лиофиб-ным и характеризуются наличием резко выраженной границы раздела фаз. Такие системы являются термодинамически неравновесными, их устойчивость следует понимать в чисто кинетическом виде как продолжительность их существования. Длительное существование лиофобных НДС требует образования адсорбционно-сольватных слоев на границе раздела дисперсная фаза — дисперсионная среда. Образование подобных слоев из молекул поверхностно-активных веществ нефтяного происхождения уменьшает значение межфазного натяжения и препятствует коагуляции частиц дисперсной фазы. Таким образом, дис- [c.12]

    Приближенность соотношений теории ДЛФО заключается еще в том, что в них не учтена природа противоионов с одинаковым зарядом. Например, пороги коагуляции уменьшаются в ряду про-тивононов-катионов > N3+ > К+ > КЬ+ > Сз+ и противоио-нов-анионов С1 > Вг > N0 > I. Приведенные лиотропные ряды характеризуют сродство ионов к растворителю. Таким образом, чем иоиы более лиофобны, тем большим коагулирующим действием они обладают. Этот факт можно объяснить увеличением специфической адсорбции ионов этих рядов. Следует также учитывать вклад в коагулирующее действие противоионов, находящихся в диффузной части двойного электрического слоя. Чем [c.336]

    Коагуляция лиофобных дисперсных систем может происходить в результате различных внешних воздействий, например при механичес1юм воздействии (ультразвука), действии электрического поля, при нагревании или замораживании системы. Коагуляция лиофобных золей может быть вызвана также их сильным разбавлением или концентрированием. Наиболее часто коагуляция дисперсных систем происходит при добавлении электролитов. Различают два типа электролитной коагуляции коллоидных систем 1) нейтрализационную, происходящую в результате снижения поверхностного потенциала частиц 2) конпен-трационную, протекающую вследствие сжатия диффузной части двойного электрического слоя (потенциал поверхности в этом случае не изменяется). [c.162]

    Эмульсии — типично лиофобные дисперсные системы (за исключением самопроизвольно возникающих критических эмульсий). Потеря их агрегативной устойчивости может быть обусловлена процессами изотермической перегонки или коагуляции (коалесценции капель) и обычно сопровождается потерей седиментациоиной устойчивости (расслоение системы). В качестве меры устойчивости эмульсии можно принять время существования определенного объема эмульсии до полного ее расслоения. [c.171]

    Устойчивость эмульсии повышают введением в систему стабилизатора (эмy [hгaтopa), в качестве которого можно использовать электролиты, ПАЕ> и высокомолекулярные соединения. Агрегативная устойчивость эмульсий определяется теми же факторами, которые обусловливают устойчивость к коагуляции других лиофобных дисперсных систем. [c.171]

    Каково различие между иейтрализационной и концентрационной коагуляцией лиофобных золей электролитами Как влияет заряд коагулирующего иона на порог быстрой коагуляции  [c.179]

    Так, например, асфальтены в остатках от перегонки нефти, богатых смолами и конденсированными ароматическими утле-родами, находятся в состоянии коллоидального раствора. Добавление растворителя, состоящего из углеводородов метанового ряда и превращающего раствор из лиофильного (сродствен-ного коллоидальному веществу) в лиофобный, вызывает коагуляцию и осаждение асфальтенов, тем более полное, чем больше добавлено лиофобного растворителя. [c.177]

    Пороги быстрой коагуляции, характеризующие первую стадию коагуляции адсорбционно ненасыщенных латексов, могут быть использованы для вычисления постояяной ван-дер ваальсова дритяжения, входящей в критерий устойчивости лиофобных коллоидов, теоретически устано влелный Б. В. Дерягиным и Л. Д. Ландау  [c.130]


Библиография для Лиофобные коагуляция: [c.6]    [c.113]    [c.113]   
Смотреть страницы где упоминается термин Лиофобные коагуляция: [c.85]    [c.174]    [c.520]    [c.187]    [c.273]    [c.131]   
Общая химия Биофизическая химия изд 4 (2003) -- [ c.510 ]




ПОИСК





Смотрите так же термины и статьи:

Барбой, Ю, М. Глазман, И. М. Дыкман. Влияние концентрации дисперсной фазы на коагуляцию лиофобных золей смесями электролитов

Закономерности коагуляции лиофобных коллоидов

Кинетика коагуляции лиофобных коллоидов

Коагуляция

Коагуляция лиофобных золей

Коагуляция лиофобных золей неэлектролитами

Критерии коагуляции лиофобных коллоидов

Лиофобные коллоиды коагуляция

Опыт 6. Взаимная коагуляция двух лиофобных золей

Опыт 7. Коагуляция лиофобного золя органическими жидкостями

Стабилизация и коагуляция лиофобных золей

Теоретические основы устойчивости и коагуляции лиофобных дисперсных систем

Теория коагуляции лиофобных золен

Устойчивость и коагуляция лиофобных золей

Устойчивость и коагуляция лиофобных коллоидов

Устойчивость и коагуляция лиофобных коллоидов Устойчивость лиофобных коллоидов с ионными адсорбционными слоями Коагуляция лиофобных коллоидов электролитами

Устойчивость лиофобных коллоидов с ионными адсорбционными солями. Коагуляция лиофобных коллоидов электролитами

Явления, наблюдаемые при коагуляции лиофобных золей электролитами

коагуляция лиофильные и лиофобные мол. вес



© 2024 chem21.info Реклама на сайте