Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отделение алюминия, циркония и ванадия

    Электролиз с применением ртут ного катода является прекрасным ме тодом отделения алюминия, титана циркония, магния, кальция, стронция бария, бериллия, ванадия, фосфата мышьяка и урана от железа, хрома цинка, никеля, кобальта, меди, олова молибдена, висмута и серебра, осаждающихся на ртутном катоде. При этом осаждение ведут из сернокислого раствора. В принципе можно осаждение проводить также из раствора H I, но при этом в электролит необходимо прибавлять гидроксиламин. Схема электролиза с ртутным катодом представлена на рис. 12.6. В качестве анода обычно используют платиновую проволоку. Электролиз проводят при силе тока 5—6 А и напряжении 6—7 В. Конец электролиза определяют капельной пробой на отделяемый элемент. Затем, не прерывая тока, сливают электролит и промывают ртуть водой. Промывные воды присоединяют к электролиту, перемешивают и определяют интересующие компоненты, [c.234]


    Отделение от алюминия, циркония и ванадия. Это отделение удается путем электролиза в разбавленном сернокислом растворе с катодом из цинковой амальгамы [676]. [c.68]

    При ректификационной очистке пентахлоридов ниобия и тантала происходит эффективное отделение многих сопутствующих примесей — таких, как титан, кремний, железо, цирконий, ванадий, олово, алюминий, вольфрам, фосфор и др. [34, 39]. [c.163]

    Электролитическое отделение алюминия, бериллия, циркония, урана, ванадия, редкоземельных элементов от других элементов, которые осаждаются на ртутном катоде [c.302]

    Осаждение купфероном (стр. 143) дает четкое отделение ряда элементов от алюминия. Этот метод особенно успешно применяется в тех случаях, когда требуется отделить малые количества железа, титана, циркония, ванадия, олова, ниобия и тантала от больших количеств алюминия, как, например, при анализе бокситов или металлического алюминия. Алюминий можно выделить из фильтрата добавлением еще некоторого количества купферона. и нейтрализацией раствора до слабокислой реакции (pH около 5). Его можно осадить также из нагретого до 70° С фильтрата оксихинолином после добавления аммиака до щелочной реакции. В дальнейшем поступают, как указано на стр. 572. [c.564]

    Преимуществами этого метода являются получение осадков, легко отделяемых фильтрованием, и малое соосаждение. Осаждаются алюминий, хром (П1), железо (HI), титан (IV), цирконий (IV), торий (IV), церий (IV), висмут, олово (IV) в растворе остаются ванадий (V), кобальт, никель, марганец, цинк, кадмий, ртуть (II) и щелочноземельные металлы. Это один из лучших методов отделения алюминия от цинка. При pH 3,5—4,0 можно осадить алюминий, отделяя его от бериллия, а затем при pH больше осадить бериллий. [c.87]

    При анализе силикатных минералов, горных пород или руд применяют предварительное отделение алюминия купфероном. С помощью купферона можно отделить алюминий от железа, титана, циркония, ванадия, ниобия, тантала и олова- > . [c.112]

    Отделить титан от алюминия, хрома, марганца, никеля, урана (VI), фосфора и бора можно осаждением купфероном в сернокислой среде . Осаждение можно проводить также и из виннокислого раствора, который более устойчив в отнощении гидролиза. Совместно с титаном купферон осаждает железо, ванадий, цирконий, ниобий, тантал, уран (IV) и частично вольфрам. От циркония титан может быть отделен осаждением циркония фосфатом натрия или фениларсоновой кислотой в присутствии перекиси водорода  [c.139]

    Осаждение купфероном в растворе, содержаш,ем 10% серной кислоты (по объему), служит для отделения алюминия от железа (III), циркония, титана, ванадия, олова и некоторых других менее часто встречающихся элементов. Купферонат железа можно экстрагировать смесью эфира и бензола (стр. 149). Избыток купферона в фильтрате или в экстрагированном растворе можно разрушить нагреванием с серной и азотной кислотами.  [c.137]


    Железо, хром, кобальт, никель, цинк и многие другие элементы могут быть легко и просто удалены пз разбавленного сернокислого раствора электролизом с ртутным катодом [32]. Алюминии остается в разбавленном кислом растворе. Этот метод отделения алюминия не нашел широкого применения при анализе силикатных и других пород, так как титан, ванадий, цирконий и фосфор остаются в растворе вместе с алюминием. [c.101]

    Для отделения алюминия, когда он присутствует вместе с небольшим числом других элементов, известны достаточно удовлетворительные методы, но для отделения его из слол-сных смесей, в которых он обычно встречается, простых методов неизвестно. Так, например, осаждение фенилгидразином (стр. 142), которое является хорошим способом отделения алюминия от железа (II), может служить лишь предварительной ступенью, если присутствуют такие элементы, как титан, цирконий, фосфор и ванадий, как это обычно бывает. [c.513]

    Отделение алюминия, хрома, бериллия и ванадия от железа, титана, урана, циркония, церия и тория. [c.438]

    Практическое значение имеет применение ртутного катода для отделения большого количества одного или одновременно нескольких металлов, переходящих в амальгаму, от примеси другого металла, остающегося в растворе. Такие элементы, как алюминий, титан, цирконий, фосфор, мышьяк, ванадий и др., не образуют амальгам и остаются при электролизе с ртутным катодом в растворе. Другие металлы, как железо, хром, медь, висмут, серебро, кадмий, молибден, цинк, олово, никель, кобальт и др., легко и количественно осаждаются на ртутном катоде, для электролиза с электролиза применяют различные приборы, [c.202]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    В присутствии ниобия и железа результаты оказываются слегка завышенными, необходимо вводить поправку. Молибден даже в небольших количествах мешает анализу и должен быть отделен. Медь, алюминий и никель при содержании каждого из этих элементов до 5%, ванадий — до 0,5% и вольфрам — до 0,2% не оказывают заметного влияния на определение 2—7% тантала. Цирконий также не-мешает анализу, но титан в количествах, превышающих 0,01 %, влияет на результаты анализа. [c.151]

    Подобным же путем можно отделить железо и хром от урана, бериллия, циркония и тория молибден от ванадия кадмий от магния медь от алюминия и т. д. При электролизе нейтральных растворов их солей на ртутном катоде могут быть выделены щелочные и щелочноземельные металлы. При этом образуются амальгамы, которые легко разлагаются водой с образованием гидроокисей этих металлов. Выделение этих наиболее электроотрицательных металлов было бы невозможно, если бы перенапряжение выделения водорода на ртути не было бы столь велико. Легкость, с которой эти металлы образуют амальгаму, используется при электроаналитических определениях для отделения их от других катионов. [c.280]

    Этим методом нельзя достигнуть отделения осаждённых сульфидов от фосфора, если в первоначальном растворе присутствовал магний или какой-нибудь щелочноземельный металл. Кроме того, этот метод не дает полного отделения марганца. Уран не осаждается вовсе. Кобальт, медь и цинк осаждаются полностью, а никель — почти полностью. Этот метод обычно применяется не для осаждения всей группы сульфидов, а для отделения железа от одного или от всех следующих ниже элементов фосфора, алюминия, ванадия хрома, титана, циркония, бериллия, ниобия и тантала. Как и в методе, описанном в п. а , осаждение никеля и кобальта идет лучше на холоду после прибавления к аммиачному анализируемому раствору нейтрального сульфита аммония и затем сульфида аммония. [c.91]

    Осаждение едким натром служит для отделения. железа, титана, циркония, редкоземельных элементов и хрома от алюминия, фосфора и ванадия. . [c.110]

    Сплавление с карбонатом натрия с последующим выщелачиванием водой. Сплавление взвешенного осадка от аммиака с карбонатом натрия и последующее выщелачивание плава водой (возможно повторенное 1 или 2 раза, в зависимости от массы и состава осадка) дает вполне удовлетворительное отделение железа, титана, циркония, бериллия и редкоземельных металлов от алюминия, хрома, ванадия и фосфора (уран разделяется и находится частью в остатке, частью в растворе). Отделение хрома является результатом его окисления до хромата во время сплавления это окисление идет обычно до конца, И прибавления окисляющих реактивов вроде селитрМ не требуется (разве только для ускорения окисления). Сплавление и выщелачивание являются предварительной ступенью, за которой должны последовать анализы соответствующими методами водной вытяжки и остатка. [c.116]


    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    ЛЯ10ЩИЙСЯ при этом осадок отфильтровывают, промывают насыщенным сероводородом 5%-пым раствором винной кислоты в 1%-ной (по объему) серной кислоте и исследуют на содержание элементов сероводородной группы Сероводородный фильтрат подщелачивают аммиаком, снова насыщают сероводородом и фильтруют для отделения сульфидов железа, никеля, кобальта и частично марганца. Из фильтрата после подйисления можно, по всей вероятности, осадить купфероном нио,бий, тантал, титан, цирконий, ванадий и некоторые редкоземельные металлы (стр. 147), а затем, разрушив купферон и винную кислоту выпариванием с серной и азотной кислотами, можно ббычным путем определить алюминий, оставшиеся редкоземельные элементы, уран, бериллий и др. (стр, 145). [c.671]

    Предложен еще один способ отделения алюминия от других элементов экстракцией его окси.чинолята добавлением ЭДТА и цианид-ионов при pH 8,5—9,0. В этих условиях шелочноземельные и редкоземельные элементы не мешают определению алюминия, однако висмут, галлий, индий, ниобий (V), тантал (V),сурьма (III), сурьма (V), титан (IV), уран (VI), ванадий (IV), цирконий и небольшие количества бериллия экстрагируются. [c.702]

    В монографии даны прописи весового метода с оксином, фотометрических методов с оксином и пирокатехиновым фиолетовым, а также косвенного титриметрического метода с ЦДТА. Эти методы Б какой-то мере компенсируют недостатки классической схемы в части определения алюминия, но также далеки от совершенства, поскольку требуют отделения железа, титана, ванадия, циркония путем экстрагирования их купферонатов, внесения поправок на влияние марганца, никеля и ванадия при титрованиях или на титан при фотометрическом определении с оксином. [c.7]

    Оксихинальдин (III) в отличие от оксина не образует нерастворимого комплекса с алюминием в растворе разбавленной уксусной кислоты, но может быть использован для осаждения железа, титана и других металлов. Этот реагент был предложен Хайнеком [23] для отделения алюминия от тех элементов, которые мешают весовому определению его с оксином. Было обнаружено, однако, что в присутствии большого количества железа некоторое количество алюминия теряется в результате соосаждения. Райли и Вильямс [24] применили экстракцию 8-оксихи-нальдином (pH 10) для удаления из раствора железа, хрома, никеля и ванадия. При данном значении pH титан остается в растворе, он удаляется в процессе повторной экстракции при pH 4 этому предшествует образование комплекса алюминия с 8-оксихинальдином при pH 4,5. Такое низкое значение pH выбрано для предотвращения комплексообразования бериллия и марганца с 8-оксихинальдином. Цирконий в этих условиях не экстрагируется, обычно этот элемент не присутствует"в силикатных породах в таких количествах, чтобы оказать заметное влияние на определение алюминия. Если цирконий присутствует в больших количествах, то он может быть удален в виде лака фиолетового цвета с хинализаринсульфокислотой при pH 4,5, при этом алюминий в раствор хлороформа не экстрагируется. [c.99]

    Отделение алюминия, хрома, бериллия и ванадия от железа, титана, урана, циркония, церия и тория. Осадок 1 промывают горячей водой, к которой прибавляют 1—2 мл 2 н. раствора ЫНдС1. Промытый осадок переносят в чашку, прибавляют 6 и. [c.434]

    Присутствие в растворе органической кислоты позволяет производить осаждеиие и в то же время отделение кальция от алюминия,железа, титана, циркония, ванадия,хрома и фосфора. [c.258]

    Если от щелочных и щелочноземельных металлов аммиаком отделяется одно железо (III) или железо в сопровождении только титана и циркония и раствор не содержит фосфора в количестве, превышающем то, какое может быть связано железом, точная нейтрализация, необходимая для полного осаждения алюминия, значения не имеет. Не требуется также присутствия значительных количеств аммонийных солей, если только не приходится принимать во внимание наличия магния. Но если присутствует алюминий или требуется отделение железа от магния, цинка, марганца, никеля и кобальта, то нужно применить метод, описанный для отделения алюминия (стр. 517). Бумажную массу следует прибавлять при последнем из двух илн нескольких переосаждений железа. Она полезна тем, что делает осадок F jOg после прокаливания более тонко измельченным и легче растворимым. Следует помнить, что, кроме железа, аммиаком осаждаются многие другие элементы (см. стр. 95) и что осадок может захватить с собой вольфрам, ванадий, уран, мышьяк и фосфор. [c.400]

    Обработка пиросульфатного плава. 1. Наилучший метод обработки пиросульфатного плава минерала или полученных в ходе анализа неочищенных окислов заключается в следующем . Охлажденный плав выщелачивают раствором 10 г винной кислоты в 50 мл воды и затем фильтруют. Если в нерастворимом остатке остается неразложенный минерал, сплавление и выщелачивание повторяют. Конечный нерастворимый остаток может состоять из кремнекислоты, сульфата свинца, касситерита и др. Его сплавляют и анализируют обычно принятыми методами. Фильтрат, обработанный с таким расчетом, чтобы в нем с(<держался 1% (по об7 ,ему) серной кислоты и 5 о винной кислоты, насыщают сероводородом. Выделяющийся при этом осадок отфильтровывают, промывают насыщенным сероводородом 5 о-ным раствором внннс й кислоты в 1%-пой (по объему) серной кислоте и исследуют на содержание элементов серов( Дородной фуппы . Сероводородный фильтрат подщелачивают аммиаком, снова насыщают сероводородом и фильтруют для отделения сульфидов железа, никеля, кобальта и частично марганца. Из фильтрата после подкисления можно, по всей вероятности, ссадить купфероном ниобий, тантал, титан, цирконий, ванадий и некоторые редкоземельные металлы (стр. 136), а затем, разрушив купферон и винную кислоту вьшари.ваиием с серной и азотной кислотами, можно обычным путем сшределить алюминий, оставшиеся редкоземельные элементы, уран, бериллий и др, (стр. 134). [c.613]

    Детально изучено отделение алюминия от основных и второстепенных составляющих этих сплавов и Определение алюминия с помощью ауринтрикарбоновой кислрты Так как анализ длинный, мы не приводим здесь подробное описание, а даем характеристику метода в общих чертах. Сурьму и олово отгоняют в виде бромидов, а свинец удаляют в виде сульфата. Оставшиеся небольшие количества свинца, железа и многих других элементов (стр. 199) удаляют электролитически на ртутном катоде. Экстракцией купферратов хлороформом удаляют титан, цирконий, следы железа (III), и частично ванадий (V). Экстракцией 8-оксихинолятов хлороформом при pH 5 в присутствии перекиси водорода отделяют алюминий от бериллия, скандия, иттрия, хрома и ванадия уран сопутствует алюминию. Окончательное определение алюминия проводят в присутствии меркаптоуксусной кислоты. Показано, что 10—80 у алюминия из образцов весом 2 г извлекаются достаточно полно. [c.215]

    Фильтрат, содержашцй тартрат аммония, можно также выпаривать досуха в большой платиновой чашке без прибавления серной кислоты. В этом случае остаток обугливают и сплавляют с карбонатом натрия и небольшим количеством селитры., Плав выщелачивают водой и раствор фильтруют. Титан и цирконий остаются на фильтре, а хром и ванадий вместе с алюминием и фосфором переходят в фильтрат в виде хромата и ванадата. О дальнейшем отделении последних двух элементов от хрома и ванадия при анализе горных пород см. стр. 978. [c.92]

    Суспензия окиси цинка не должна показывать щелочной реакции по фенолфталеину. В присутствии большого количества железа (III), что имеет место, например, при анализе стали, после окЕСЛения раствора пробы, осадок от окиси цинка будет содержать все железо, вольфрам, ванадий, хром, уран, цирконий, титан, алюминий, фосфор, мышьяк, олово и почти полностью медь, молибден и кремний. Железо (II), вольфрам (если они не полностью окислены) и малые количества кремния, меди, молибдена, сурьмы и свинца могут оказаться в фильтрате, если они присутствовали в первоначальном растворе в значительных количествах. Фильтрат содержит марганец и кобальт почти полностью если осадок переосадить и соединить фильтраты, то отделение марганца и кобальта можно считать полным. Отделение никеля не так удовлетвори- [c.108]


Смотреть страницы где упоминается термин Отделение алюминия, циркония и ванадия: [c.180]    [c.75]    [c.107]    [c.434]    [c.19]    [c.108]    [c.114]   
Аналитическая химия Таллия (1960) -- [ c.68 ]

Аналитическая химия таллия (1960) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий отделение

Ванадий отделение от алюминия

Отделение от циркония



© 2025 chem21.info Реклама на сайте