Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк в присутствии фосфатов

    Кинетика и термодинамика образования гетерополикислот кремния, мышьяка, фосфора и германия рассмотрены в разделе Ортофосфаты . Высокая устойчивость КМК в присутствии ацетона позволяет определять кремний в присутствии Р . Наиболее эффективным реагентом для маскировки фосфатов в широком интервале концентраций является, вероятно, маннит [53, 54]. В результате предложен чувствительный метод определения менее 500 мкг 5162 в присутствии фосфата. Поглощение измеряют при 370 нм. В случае определения 51 , Р , Аз и Се" при их совместном присутствии повышение селективности достигается также методом жидкостной экстракции. Примеры анализа приведены в разделе Ортофосфаты , причем силикат определяют в водной фазе после экстракции фосфорномолибденовой кпслоты [55]. Другие примеры экстракционно-спектрофотометрического определения силиката даны в табл. 12. [c.197]


    Сел.ективная экстракция кремнемолибденовой кислоты (или соответствующих кислот фосфора и мышьяка) позволяет определять силикат в присутствии фосфата и арсената. Кремнемолибденовую кислоту можно экстрагировать смесью диэтиловый эфир — пентанол [7]. Затем отмывают экстракт от избытка молибдена, реэкстрагируют молибден в водную фазу и определяют содержание молибдена. Метод позволяет определять 0,1 —1,2 ррт кремния. В работе [68] предложено непосредственное определение молибдена в бутанольном экстракте р-кремнемолибденовой кислоты. Интервал определяемых содержаний кремния 0,08—1,2 ррт. Определению не мешают фосфаты, но мышьяк(V) и германий (IV) мещают, завышая результаты анализа. Определению силиката не мешают 100-кратный избыток ионов А1 , Аи , В1 ", [c.201]

    Мышьяк мешает, постепенно образуя коричневую муть или черный осадок его можно удалить в виде летучего хлорида. Титан в количествах меньше 10 мг на 25 мл раствора не мешает при количествах, превышающих 10 мг, образуется желтая окраска, которая в присутствии фосфатов становится более интенсивной. Соли никеля, кобальта, хрома и ванадия мешают своей окраской, если присутствуют не в очень малых количествах. Интенсивность окраски, образуемой трехокисью молибдена МоОз, приблизительно в 25 раз слабее, чем интенсивность окраски, образуемой равным по весу количеством трехокиси вольфрама WOs. [c.186]

    Существует много хороших методов прямого отделения мышьяка. Метод, имеющий наибольшую применимость, состоит в отгонке хлорида мышьяка (III) из солянокислого раствора. Для восстановления пятивалентного мышьяка до трехвалентного применяют такие восстановители, как сульфат гидразина, хлорид меди (I) или сульфат железа (II). Присутствие бромидов способствует восстановлению. Азотная кислота и другие сильные окислители должны отсутствовать. Присутствие серной кислоты не мешает. Германий при отгонке сопутствует мышьяку сурьма может частично перегоняться, если температура отгонки поднимается выше 107°. Ни один из этих элементов не мешает последующему колориметрическому определению мышьяка. Если фосфатов много, то отгонку повторяют при тех же условиях, как и в первый раз, чтобы устранить ошибку, которая может возникнуть при механическом увлечении фосфора в первый дестиллат. Пропускание углекислоты или азота через раствор во время дестилляции облегчает улетучивание мышьяка. Дестиллат можно собрать в холодную воду. Указания для выполнения отгонки с применением сульфата гидразина в качестве восстановителя даны на стр. 341. [c.336]


    С индикатором нитхромазо разработаны методики определения сульфат-ионов в фосфорной кислоте [709], в фосфор-, мышьяк- и металлосодержащих органических соединениях [710—713], в природной и котловой воде в присутствии фосфатов [714, 715, в биологических материалах [715—7171, в газах контактных сернокислотных цехов [718], растворах электролитов [719—721], гипсе и цементе [722], удобрениях [723]. [c.76]

    Пятивалентный мышьяк образует малорастворимое соединение с кальцием 3j(AsO , растворимость которого уменьшается в присутствии фосфат-ионов. [c.612]

    Применение катализаторов в процессе каталитического сжигания лимитируется не только температурой, но и присутствием в отходящих газах каталитических ядов (тяжелых металлов, фосфатов, соединений мышьяка, серы и галогенов) как в элементарном виде, так и в форме различных соединений. [c.144]

    Тяжелые металлы — свинец и мышьяк — действуют подобно фосфатам, образуя тонкие дезактивирующие пленки. Дезактивация и засорение катализатора могут быть обусловлены присутствием [c.190]

    Азот и фосфор широко распространены в природе и являются важными составными частями нашего окружения. Азот, как известно, является главным компонентом земной атмосферы и в значительных количествах присутствует в биологических системах. Фосфор входит в состав некоторых минералов, например фосфатов этот элемент то же является важной составной частью биологических систем. Мышьяк, сурьма и висмут распространены гораздо меньше, но все же без особого труда добываются из некоторых минералов. Висмут занимает интересное место в химии. Единственный природный изотоп этого элемента ° Bi имеет самый высокий атомный номер среди [c.313]

    Приступая к анализу, следует иметь в виду, что присутствие в растворе некоторых анионов мешает нормальному проведению хода анализа по описанной ниже схеме. Так, например, сильные окислители препятствуют осаждению элементов II группы сероводородом, окисляя его. Соли слабых кислот мешают регулировать кислотность раствора (перед осаждением сероводородом). Большая концентрация циан-ионов препятствует выделению меди в виде сульфида вследствие образования комплексного соединения. По той же причине ие могут быть осаждены сульфиды олова (II), мышьяка (V) и сурьмы (V) при наличии в растворе фторидов. Фосфаты вызывают преждевременное осаждение щелочноземельных элементов, которые благодаря этому могут выпасть в осадок вместе с III группой. [c.68]

    В сплавах цветных металлов часто содержатся кремний, фосфор и мышьяк, которые могут быть определены после растворения сплава в концентрированной азотной кислоте в полученном растворе определяют фосфат-ион осаждением молибдатом аммония. Кремний в виде кремневой кислоты остается в нерастворимом остатке вместе с метаоловянной кислотой, которую отделяют растворением в концентрированной соляной кислоте, как описано выше кремневую кислоту обнаруживают по 44. Мышьяк определяют обычным путем (см. 17). Если в сплаве присутствовал фосфор, то при систематическом ходе анализа он должен быть удален, как это описано в 18. [c.131]

    Для определения мышьяка в присутствии фосфора в одной аликвотной части раствора определяют содержание фосфата. [c.55]

    Определению кадмия не мешают свинец, висмут, мышьяк, сурьма, олово, хром, алюминий, железо, марганец, цианиды, роданиды, фосфаты, сульфиты, тиосульфаты и другие ионы, обычно присутствующие в водах в концентрациях ниже 50 мг/л-. [c.289]

    Определение малых количеств молибдена в свинце может быть проведено после предварительного отделения молибдена от свинца соосаждением молибдата свинца с какой-нибудь труднорастворимой солью в качестве коллектора. Этим коллектором может служить, например, присутствующий в свинце мышьяк, образующий труднорастворимый осадок арсената свинца. Если свинец является чистым (марки С-00, С-000) и не содержит больших количеств мышьяка, то в качестве коллектора можно использовать другие труднорастворимые соли свинца. Осаждение малых количеств молибдата свинца проводили фосфатом свинца. Для удержания в растворе висмута и железа использовали комплексон III. Осадок фосфата свинца вместе с молибденом захватывал также мышьяк и сурьму. Для их удаления осадок обрабатывали горячей соляной кислотой и затем проводили упаривание с серной кислотой. При этом мышьяк и большая часть сурьмы отгонялись в виде хлоридов. После отделения сульфата свинца в фильтрате колориметрически определяли молибден по окраске его роданидного комплекса, который извлекали изоамиловым спиртом. При содержании молибдена больше 0,0001 % для колориметрирования брали аликвотную часть с содержанием 0,04—0,1л г молибдена. При [c.275]

    Мышьяк (V) можно отделить рт сурьмы и олова осаждением магнезиальной смесью в холодном прозрачном аммиачном растворе, содержащем тартрат или цитрат аммония. Осадок будет, конечно, содержать, л фосфор, если последний присутствовал в анализируемом растворе. Этому осаждению мешают те же вещества, какие мешают и осаждению фосфора (стр. 785). Арсенат магния и аммония более растворим в аммиаке и в растворах аммонийных солей, чем фосфат магния ii аммония, и его нельзя прокаливать в присутствии органических веществ. [c.306]


    Молибден, хром и ванадий восстанавливаются свинцом, и так как продукты, их восстановления титруются иодом, то для олова получаются повышенные результаты. Присутствие этих элементов обнаруживается по изменению окраски раствора при восстановлении олова. Молибден, например, после восстановления окрашивает раствор в коричневый цвет, а ванадий — в пурпуровый. Малые количества мышьяка не мешают определению Из остальных веществ, не мешающих титрованию, можно отметить сульфаты, фосфаты, иодиды, бромиды, фториды, железо, никель, кобальт, цинк, марганец, уран, алюминий, свинец, висмут, магний и щелочноземельные металлы. [c.339]

    Онределение в присутствии мышьяка. Поступают так же, как указано выше (см. Определение в отсутствие мышьяка и значительных количеств олова или железа , стр. 786), вплоть до растворения первого осадка фосфата магния и аммония в разбавленной соляной кислоте. Если известно, что содержание мышьяка невелико, прибавляют 0,5—1 0 бромида аммония, осторожно кипятят раствор, пока он почти полностью не выпарится, и обрабатывают остаток 25 мл разбавленной (1 1) соляной кислоты. Когда присутствуют большие количества мышьяка, обработку солянокислого раствора бромидом аммония и кипячением необходимо повторить 2—3 раза или лучше удалить мышьяк осаждением из солянокислого раствора сероводородом и фильтрованием. Фильтрат затем кипятят для удаления сероводорода и уменьшения объема до 50— 100 мл. [c.788]

    Элементарная сера содержит много примесей, характер и количество которых связаны с источником получения и последующими методами очистки ее. Содержание примесей в самородной сере достигает 0,1—0,5%. Характерными примесями природной серы являются орган ические соединения (битумы), продукты окисления серы, селен, теллур, мышьяк а хлор. В микроколичествах могут присутствовать примеси многих элементов, кремневая кислота, фосфаты и др. [c.422]

    Оксалат аммония применяют в качестве реактива при количественном определении тория, редкоземельных металлов и главным образом кальция. Кальций количественно осаждается в виде оксалата кальция в аммиачных или слабокислых растворах. К выделению кальция в виде оксалата приступают обычно после соответствующего отделения остальных аналитических групп, так как практически все катионы мешают определению кальция вследствие образования нерастворимых гидроокисей или оксалатов. Применение комплексона здесь особенно выгодно, так как в слабо кислом растворе, содержащем уксусную кислоту, все катионы связываются в прочные комплексы, не гидролизуются и не осаждаются оксалатом, тогда как кальций выделяется в виде оксалата в пригодном для фильтрования виде [82]. Простым осаждением можно надежно определить кальций в присутствии ртути, свинца, висмута, меди, кадмия, мышьяка, сурьмы, железа, хрома, алюминия, титана, урана, бериллия, молибдена, вольфрама, церия, тория, никеля, кобальта, марганца, цинка, магния и фосфатов. [c.102]

    В новом издании сокращено изложение качественного анализа и даны более расширенно методы физико-химического анализа. Сокращения курса качественного анализа сделаны в основном за счет сокращения описания реакций некоторых ионов и хода анализа цекоторых смесей. Так, во втором издании не приведены реакции ионов стронция, кобальта, никеля и мышьяка. Не излагается ход анализа смеси катионов первой и второй аналитических групп в присутствии сульфат-ионов, смеси катионов первых трех аналитических групп в присутствии фосфат-ионов и органических соединений. Исключен также анализ сплавов. [c.4]

    На оптическую плотность растворов синего комплекса практически не влияют небольшие вариации избытка молибдата в растворе, количества восстановителя и количества нейтральных солей, получающихся при минерализации органических соединений, незначительные колебания продолжительности образования желтого комплекса и другие факторы. Желтый комплекс образуется при рН=1,6—1,8 в течение 3—5 мин. В связи с тем, что часто приходится проводить определение кремния в пробах неизвестного элементного состава или в веществах, содержащих фосфор, мышьяк, германий, образующие гетерополикислоты с молибдатом, в состав восстанавливающего раствора вводят серную и щавелевую кислоты. Первую — для резкого изменения pH до 0,8—1,0, при котором эти гетерополикислоты разрушаются, вторую — в качестве маскирующего агента для мешающих соединений. Для предотвращения ослабления окраски кремниймолибденового комплекса маскирующие агенты и кислоту вводят после полного развития окраски желтого кремниймолибденового комплекса. Возможность определения кремния в присутствии фосфат-ионов установлена для атомных соотношений фосфор кремний = 2 1. [c.171]

    СТЕКЛО (обыкновенное, неорганическое, силикатное) — прозрачный аморфный сплав смеси различных силикатов или силикатов с диоксидом кремния. Сырье для производства стекла должно содержать основные стеклообразующие оксиды 510а, В Оз, Р2О5 и дополнительно оксиды щелочных, щелочноземельных и других металлов. Необходимые для производства С. материалы — кварцевый песок, борная кислота, известняк, мел, сода, сульфат натрия, поташ, магнезит, каолин, оксиды свинца, сульфат или карбонат бария, полевые шпаты, битое стекло, доменные шлаки и др. Кроме того, при варке стекла вводят окислители — натриевую селитру, хлорид аммония осветлители — для удаления газов — хлорид натрия, триоксид мышьяка обесцвечивающие вещества — селен, соединения кобальта и марганца, дополняющие цвет присутствующих оксидов до белого для получения малопрозрачного матового, молочного, опалового стекла или эмалей — криолит, фторид кальция, фосфаты, соединения олова красители — соединения хрома, кадмия, селена, никеля, кобальта, золота и др. Общий состав обыкновенного С. можно выразить условно формулой N3,0-СаО X X65102. Свойства С. зависят от химического состава, условий варки и дальнейшей обработки. [c.237]

    Для соединений фосфора наиболее характерны следующие степени окисления —3 (фосфин РНз), +3 (РС1з), + 5 (Н3РО4). Среднее содержание фосфора в земной коре достигает 0,09 %, причем его водная и воздушная миграция относительно невысока. Несмотря на значительное разнообразие минеральных и органических соединений фосфора, в природе в виде минералов встречаются практически только производные ортофосфорной кислоты — ортофосфаты, причем до 95 % всех природных фосфатов составляют фосфаты кальция. В земной коре значительная часть соединений фосфора представлена разновидностями апатита, преимущественно фторапатитом Са,о(Р04)йр2. В апатитах также присутствуют примеси кадмия, мышьяка, хлора. [c.60]

    Как уже было сказано, пятивалентный мышьяк выделяется медленно и неполностью при осаждении сероводородом сульфидов II группы (из раствора, кислотность которого соответствует указанной в 5) значительная часть арсенат-ионов остается в растворе вместе с катионами III, IV и V групп. Присутствие в этом растворе ионов ASO4", так же как и РОГ, недопустимо, так как в этом случае при нейтрализации раствора катионы IV группы и Mg будут осаждаться в виде арсенатов и фосфатов. Поэтому, прежде чем приступить к осаждению [c.83]

    В присутствии сурьмы и фосфатов необходимо мышьяк предварительно отделять осаждением в виде AsjSg. Осадок AsjSg растворяют в смеси HNOg 4- Вгз, из полученного раствора осаждают мышьяк, как указано выше. [c.40]

    В схеме анализа, разработанной Нойесом и Брэем, к твердому веществу прибавляют НВг и перегоняют мышьяк, германий и селен в виде бромидов. Раствор, освобожденный от этих элементов, выпаривают с НСЮ почти досуха. Остаток служит для осаждения Sb, Sn, VV, Та, Nb и др-в виде окисей или фосфатов. Поскольку титановые соли легко гидооли-зуются, то при обыкновенных условиях в этом остатке остается весь титан, аа исключением 4 мг его. Присутствие цириония препятствует полному осаждению титана, но как цирконий, так и титан осаждаются, когда врас  [c.596]

    Общие замечания. Магний почти всегда осаждают в виде фосфата магния и аммония MgNH4P04 6Н2О и взвешивают после прокаливания в виде нирофосфата магния Mg2P207. Так как многие другие элементы образуют нерастворимые фосфаты, то осаждение магния, как правило, должно проводиться после обычных отделений сероводородом, аммиаком, сульфидом аммония и оксалатом аммония. Надо иметь в виду, что при выполнении этих осаждений большее или меньшее количество магНия может быть потеряно (см. стр. 694), особенно в тех случаях, когда присутствуют большие количества мышьяка или фосфора, или если осаждение аммиаком и оксалатом аммония проводится только однократно. Магний можно осаждать в виде фосфата в присутствии хромат-ионов. [c.719]

    Определение в присутствии умеренных количеств железа, алюминия, ванадия, цинка, олова, т и т а и а и л и циркония. К 100 мл раствора, содержаш,его фосфор в виде ортофосфорной кислоты, прибавляют 3—5 г лимонной кислоты и 25—50-кратный избыток, магнезиальной смеси Осаждают, как указано выше (см. раздел Юпределение в отсутствие мышьяка и значительных количеств олова или железа , стр. 786), и оставляют раствор при комнатной температуре 12—24 ч. Осадок отфильтровывают, промывают и растворяют, как описано в том же разделе, а затем извлекают фосфат, оставшийся на фильтре. К раствору прибавляют 0,2—0,5 г лимонной кислоты, 3—4 мл магнезиальной смеси и продолжают анализ, как указано там же. [c.788]

    Очистка мышьяка. Отгон мышьяка подкисляют, добавляют носитель фосфора и осаждают фосфор и мышьяк в виде магний-аммоний фосфата (арсената) магнезиальной смесью. Осадок отфильтровывают на плотном бумажном фильтре, промывают водой и растворяют в 6Л H I. Раствор нагревают до кипения и осаждают мышьяк гипофосфитом натрия в присутствии обратных носителей индия, кадмия и сурьмы. Осадок растворяют в концентрированной НС1 в присутствии Н2О2, кипятят для удаления перекиси водорода, разбавляют до ЭЯ H I, добавляют носители индия и цинка и осаждают сульфид мышьяка сероводородом. Осадок отфильтровывают на стеклянном фильтре № 3, промывают 6N НС и водой и растворяют на фильтре в концентрированной НС1 с Н2О2. Раствор кипятят для разложения перекиси, разбавляют в 2 раза водой и осаждают элементарный мышьяк гипофосфитом натрия. Осадок центрифугируют, промывают 6N НС1, водой, ацетоном и эфиром, высушивают, наносят на мише-нь для измерения и взвешивают. [c.199]

    Растворение образцов проводят в присутствии НС1 во избежание образования осадка метасурьмяной кислоты. Из полученного раствора аммиаком осаждают осадки гидроокисей сурьмы и железа и арсенат железа. Осадок отфильтровывают, промывают 2%-ньш раствором NH4NO3 и растворяют на фильтре в горячей 6N НС1. К полученному раствору добавляют фосфат натрия (3 мг Р), сульфат аммония (30 мг S) и действием избытка хлоридов бария и циркония осаждают осадки фосфата циркония и сульфата бария. Раствор с осадком нагревают на водяной бане, осадок отфильтровывают и отбрасывают. К фильтрату добавляют 0,5 г солянокислого гидразина и производят отгонку хлорида мышьяка при 108—109° С. [c.439]

    Обнаружение и отделение AsOi и POi. К уксуснокислому раствору (3) прилейте магнезиальной смеси в присутствии анионов фосфата и мышьяка при нагревании выпадает магнийаммонийфосфат и магнийаммонийарсенат, 2Б  [c.387]

    Вопрос о присутствии или отсутствии некоторых анионов решается попутно с открытием катионов. Так, например, фосфат-ионы открывают перед осаждением катионов 1П группы сульфидом аммония ( 113). При отсутствии в растворе мышьяка анионы AsO и As07 присутствовать не могут. Также, не открыв в растворе хрома, мы можем утверждать, что в нем отсутствуют анионы Сг07 и Сг ОТГ поскольку эти анионы в ходе анализа катионов восстанавливаются сероводородом в ноны Сг+++ и таким образом попадают в 1П группу катионов. [c.538]


Смотреть страницы где упоминается термин Мышьяк в присутствии фосфатов: [c.535]    [c.426]    [c.239]    [c.307]    [c.299]    [c.26]    [c.525]    [c.39]    [c.265]    [c.476]    [c.477]    [c.77]    [c.1218]    [c.96]    [c.103]    [c.539]    [c.470]    [c.298]   
Микрокристаллоскопия (1955) -- [ c.218 ]




ПОИСК







© 2025 chem21.info Реклама на сайте