Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рутения комплексы

    Действие сильных окислителей [43]. Вторичные спирты легко окисляются в кетоны бихроматом в кислой среде [44] при комнатной температуре или небольшом нагревании. Это наиболее распространенный реагент, хотя применяют также другие окислители (например, КМп04, Вгг, МпОг, тетроксид рутения [45] и т. п.). Раствор хромовой и серной кислот в воде известен под названием реактива Джонса [46]. Титрование реактивом Джонса ацетонового раствора вторичных спиртов [47] приводит к быстрому их окислению до кетонов с высоким выходом, причем при этом не затрагиваются двойные и тройные связи, которые могут присутствовать в молекуле субстрата (см. реакцию 19-10), и не происходит эпимеризации соседнего хирального центра [48]. Реактив Джонса окисляет также первичные аллильные спирты до соответствующих альдегидов [49]. Широко применяются также три других реактива на основе Сг(У1) [50] дипиридинхром (VI)оксид (реактив Коллинса) [51], хлорохромат пиридиния (реактив Кори) [52] и дихромат пиридиния [53]. МпОг также отличается довольно специфическим действием на ОН-группы и часто используется для окисления аллильных спиртов в а,р-ненасыщенные альдегиды и кетоны. Для соединений, чувствительных к действию кислот, применяют СгОз в ГМФТА [54] или комплекс СгОз — пиридин [55]. Гипохлорит натрия в уксусной кислоте полезен для окисления значительных количеств вторичных спиртов [56]. Используют и окислители, нанесенные на полимеры [57]. Для этой цели применялись как хромовая кислота [58], так и перманганат [59] (см. т. 2, реакцию 10-56). Окисление перманганатом [60] и хромовой кислотой [61] проводят также в условиях межфазного катализа. Межфазный катализ особенно эффективен в этих реакциях, поскольку окислители нерастворимы в большинстве органических растворителей, а субстраты обычно нерастворимы в воде (см. т. 2, разд. 10.15). При проведении окисления действием КМп04 использовался ультразвук [62]. [c.270]


    Среди соединений азота большой интерес представляют комплексы, в которых молекула азота связана с ионом (или ионами) металла. Хорошо известны комплексы молекулы N2 с соединениями молибдена, кобальта, железа, никеля, рутения, рения, осмия и др. Подобного рода комплексы не являются экзотическими — они имеют прямое отношение к проблеме фиксации атмосферного азота и вопросам моделирования нитрогеназы (фермента, катализирующего процесс нитрификации). Интерес к таким соединениям стимулируется и практическими, и теоретическими причинами. В частности, относительная легкость образования соединений молекулярного азота дает возможность оценить, в какой мере справедливы обычные утверждения о его малой химической активности. [c.176]

    Сходное понижение каталитической активности при увеличении дисперсности металла на поверхности нанесенного катализатора Ни/ЗЮа наблюдалось [234] для )еакций гидрогенолиза и дегидрирования циклогексана. Резкое понижение каталитической активности рутения в случае реакции гидрогенолиза объясняли особенно большой чувствительностью этой реакции к структуре поверхности катализатора, а также отрицательным влиянием высокой дисперсности металла на образование поверхностных комплексов, ответственных за эту реакцию. Кроме того, высказывается мнение, что очень высокая степень дисперсности металла, осажденного на носителе, может оказаться неблагоприятной для обоих типов реакций, особенно для гидрогенолиза, из-за диффузионного торможения исходными углеводородами (бензол или циклогексан), а также продуктами их преврашений. [c.164]

    Из сказанного выше следует, что торий, уран и плутоний в четырех- и шестивалентном состояниях могут быть отделены от трехвалентных редкоземельных продуктов деления вследствие их различной склонности к комплексообразованию. Катионы продуктов деления с более высоким зарядом, например четырехвалентный церий, а также переходные элементы пятого периода — цирконий, ниобий, молибден, технеций и рутений, комплексуются легче, чем трехвалентные редкие земли, и поэтому труднее отделяются от урана и плутония при помощи процессов, в которых используется комплексообразование. [c.288]

    Промежуточные комплексы, аналогичные комплексу I, обнаружены также при линейной олигомеризации и полимеризации бутадиена под влиянием комплексов палладия [49] и рутения [60]. [c.106]

    Реальная ситуация более сложна, поскольку координата X зависит от всех лигандов и электронов комплекса. В зависимости от того, насколько близко расположены металлические центры и насколько велико перекрывание орбиталей (по одной на каждом атоме рутения), те две орбитали, на которых может находиться неспаренный электрон, в состоянии смешиваться с образованием связывающей и разрыхляющей комбинаций. Это должно приводить к картине, изображенной на рис. [c.122]


    Рассматриваемый комплекс рутения [55] дает интенсивную полосу поглощения в ближней ИК-области при 1570 нм. Эту полосу приписывают электронному переходу, показанному на рис. 10.27,Л, и обозначают iT. Константа скорости электронного обмена, рассчитанная из энергии этого перехода для описанной выше приближенной модели с помощью уравнения (10.39), составляет З Ю с . Электронный переход описывается как переход [2, 3] [3, 2]. [c.122]

    Изомеризацию активируют не только хлориды палладия, платины, иридия, родия, рутения, но и их я-комплексы. Высокую каталитическую активность проявляют комплексы и некоторых других переходных металлов (в частности, никеля), а также каталитические системы типа катализаторов Циглера — Натта. Как было отмечено на стр. 98, хлориды переходных металлов при взаимодействии с олефинами образуют л-комплексы. В табл. 32 приведены данные о каталитической активности некоторых комплексов переходных металлов дополнительные сведения имеются в обзорах [25, 26, 45]. Поскольку общее число известных из литературы комплексов, катализирующих изомеризацию, превышает 150, таблицу следует рассматривать только как иллюстративную. [c.114]

    Степень окисления - -i обычно проявляют рутений и осмий. Для них известны оксиды, галиды и многочисленные производные анионных комплексов общей формулы [c.629]

    Оптически активные комплексы с октаэдрической конфигурацией известны также для хрома, железа, алюминия, рутения, родия, иридия, платины, мышьяка. [c.80]

    Н2О, [Ни <(С0)212]п (мостиковыми являются иодо-грунпы). Сведения об образовании рутением комплексов других типов в литературе отсутствуют. Производные Ни (VI), Ни (V) и Ни (IV) малочисленны и их изомерия не описана. Мало изучена изомерия комплексов Ни (II). Для комплексных производных Ни (III) характерно проявление след, типов изомерии  [c.363]

    Исходное состояние реакции — комплекс рутения (лиганды не обозначены), молекула На и молекула фумаровой кислоты. На стадии [c.628]

    Селективное превращение циклододекана в циклододецен возможно на растворимых комплексных катализаторах, содержащих кобальт, рутений и родий. Наиболее перспективный гомогенный катализатор — карбонйлфосфнновый комплекс кобальта [Оз(СО)зРВиз12. [c.20]

    Элементы первой диады (Ри, Оз), обладающие повышенной активностью к кислороду, при непосредственном взаимодействии с ним образуют летучие оксиды О3О4 и Ри04. Это единственные в своем роде примеры соединений, в которых степень окнсления элемента УП1 В-группы равна +8, т. е. отвечает номеру группы. В силу координационной насыщенности эти оксиды не присоединяют воду, поэтому им не отвечают гидроксиды. Они способны растворяться в воде, химически с нею не взаимодействуя. Кислотный характер этих оксидов проявляется лишь в их способности образовывать комплексные соли с основными гидрооксидами, например К2Юз04(0Н)21. Однако эти комплексы нестабильны, особенно для рутения. [c.419]

    Внутренние алкины окисляются [354а] до а-дикетонов под действием ряда окислителей, включая тетроксид рутения [355], перманганат калия в нейтральной среде [356], ЗеОг в присутствии небольшого количества серной кислоты [357], N-бромо-сукцинимид в безводном диметилсульфоксиде [358], иодозобензол при катализе комплексами рутения [359] и нитрат таллия (III) [197]. Озон обычно окисляет олефины до карбоновых кислот (реакция 19-9), но иногда удается получить и а-дикетоны. Под действием ЗеОг в присутствии небольшого количества серной кислоты арилацетилены превращаются в а-кетокислоты (АгС СН АгСОСООН) [357]. [c.304]

    При обработке альдегидов, как содержащих, так и не содержащих а-водорода, этилатом алюминия одна молекула окисляется, а вторая — восстанавливается, как и в реакции 19-70, но в этом случае продуктом является сложный эфир. Этот процесс называется реакцией Тищенко. Возможны также перекрестные реакции Тищенко, При действии более основных алкоголятов, например алкоголятов магния или натрия, альдегиды, имеющие атом водорода в а-положении, вступают в аль-дольную конденсацию. Механизм этой реакции, как и в реакции 19-70, включает перенос гидрид-иона [630]. Реакция Тищенко катализируется также комплексами рутения [631], Ь1 У02 [632], борной кислотой [633], а для ароматических альдегидов — тетракарбонилферратом натрия Ка2ре(СО)4 [634]. [c.339]

    Дифениламиндикарбо-новая кислота 2,2-Дипиридил (комплекс с рутением) [c.156]

    Несмотря на то, что при расщеплении не удалось добиться высокой оптической чистоты, были зафиксированы вращения в сотни градусов, так как удельное вращение этих комплексов очень велико [10]. Сходным путем [11] — хроматографированием на О-(- -)-лактозе, были частично расщеплены на оптические антиподы трцс-ацетилацетонаты хрома, кобальта, рутения, родия. Комплекс трехвалентного хрома с гексафтор-ацетилацетоном был получен в оптически активной форме расщеплением с помощью газо-жидкостной хроматографии на Оптически активном кварце. [c.670]

    Фторидные комплексы такого типа неизвестны. Близко к галоге-нидным комплексам примыкают цианидные, которые особенно устойчивы для платины (для [Р1(СК)4]"- рЛ нсст 41). Для рутения и осмия в цианидных комплексах характерно к. ч. 6 К4ГЭ(СМ)в]. Известны и соответствующие кислоты Н4[Э(СК)в], представляющие собой бесцветные кристаллические вещества. Для платиноидов в степени окисления +2 известны роданидные (На[Р1 (СК5)4], Р- нест 28), оксалатные [3(0204)2] и комплексы с более сложными органическими лигандами. [c.424]


    Степень окисления +3 в комплексных соединениях наиболее типична для Ни, Оз, КЬ и 1г. Для платины и палладия такие производные неизвестны. Среди этих соединений распространены галогениды МезОГв], причем галогенидные комплексы рутения и родия кристаллизуются с одной молекулой воды (Мез[ЭГ,] НаО), а осмия [c.424]

    Трансвлияние. Важнейшая закономерность, которой подчиняется реакционная способность комплексных соединений, была открыта И. И. Черняевым (1926) и была названа им трансвлиянием. Работая с комплексами платины Р1 +, он установил, что неоднородные лиганды в транс-положении оказывают друг на друга влияние, проявляющееся в большей или меньшей способности этих лигандов вступать в реакции замещения (обмена). Позже трансвлияние было обнаружено на производных +, Со +, РЬ +, 1гз+, Рс12+ и некоторых комплексах рутения. Впоследствии оказалось, что трансвлияние является общей закономерностью для неоднородных комплексов квадратной или октаэдрической структуры. [c.157]

    Эти общие замечания могут иметь больше смысла, если их проиллюстрировать реальной и удачной фотовосстановительной системой. Окислительно-восстановительная пара, которая чаще всего используется для экспериментов по разложению воды, включает комплекс трис(дипиридил)рутений, обозначаемый как (Ь1ру)з/Ки +(Ыру)з или, для простоты, К +/Н2+. Пара имеет разность окислительно-восстановительных потенциалов 1,27 В в невозбужденном состоянии. К2+ сильно поглощает свет в видимой области, при этом энергия возбуждения составляет около 2 эВ и окислительно-восстановительный потенциал становится (1,27—2)=—0,73 В. Две привлекательные особенности рутениевого комплекса заключаются в сильном поглощении света и относительно большом времени жизни возбужденного состояния (К +), позволяющем реагировать с другими партнерами. Эффективным промежуточным акцептором служит метилвиоло-ген, обозначаемый как MV + или МУ+. Последовательность стадий будет следующей  [c.270]

    Фторидные комплексы такого типа неизвестны. Близко к галогенидным комплексам примыкают цианидные, которые особенно устойчивы для платины (для [Р1(СК)4]2 р/1 (,ст 41). Для рутения и осмия в цианидных комплексах хар актерно к.ч. 6 К4[Э(СК)( ]. Известны и соответствующие кислоты Н4[Э(СК)( ], представляющие собой бесцветные кристал.яические вещества. Для платиноидов в степени окисления 4-2 известны роданидные (H2[Pt( NS)4], рА нест 28), оксалатные [Э(С204)2]2 комплексы. [c.500]

    СОЗДАНИЕ НАУЧНЫХ ОСНОВ ПОЛУЧЕНИЯ ОКСОМОСТИКОВЫХ КАРБОКСИЛАТНЫХ КОМПЛЕКСОВ РУТЕНИЯ, РОДИЯ, ОСМИЯ И ИРИДИЯ ДЛЯ РАЗРАБОТКИ ЭКОЛОГИЧЕСКИ БОЛЕЕ БЕЗОПАСНЫХ ТЕХНОЛОГИЙ ВСКРЫТИЯ ПЛАТИНОСОДЕРЖАЩЕГО ПЕРВИЧНОГО И ВТОРИЧНОГО [c.88]

    Разработаны новые нетрадиционные методы синтеза полиядерных оксокарбок-силатных комплексов родия(1П), иридия(1П), рутения(1П) и осмия(1У) в том числе и с использованием высокоокисленных состояний атомов металлов в исходных соединениях. [c.88]

    Разработаны нетрадиционные методы синтеза полиядерных оксокарбоксилатных комплексов рутения(Ш), осмия(1У), родия(Ш) и иридия(Ш), в том числе и с использованием исходных соединений с высокоокисленными состояниями ионов металлов. [c.73]

    Исследованы поверхностные и объемные реакции газочувствительных соединений с электроно-донорными газами и парами (аммиак, гидразин, летучие амины, сероводород, пары воды и др.). В качестве газочувствительных соединений использовали синтезированные координационные соединения 8-й (и др.) фупп периодической системы с макроциклически-ми лигандами (порфирины, дибензотетраазааннулены), диоксимами, окси-оксимами неорганическими комплексами висмута, фосфора, рутения, осмия. [c.103]


Смотреть страницы где упоминается термин Рутения комплексы: [c.229]    [c.371]    [c.229]    [c.44]    [c.408]    [c.544]    [c.484]    [c.284]    [c.271]    [c.396]    [c.418]    [c.496]    [c.500]   
Неорганическая химия (1989) -- [ c.423 , c.425 ]

Металлоорганические соединения переходных элементов (1972) -- [ c.0 ]

Механизмы неорганических реакций - Изучение комплексов металлов в растворе (1971) -- [ c.0 ]

Реакции координационных соединений переходных металлов (1970) -- [ c.124 , c.216 , c.220 , c.221 , c.260 , c.263 , c.299 ]

Органические синтезы с участием комплексов переходных металлов (1979) -- [ c.0 ]

Металлоорганическая химия переходных металлов Том 2 (1989) -- [ c.34 , c.36 , c.40 , c.47 , c.111 , c.124 , c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Аренные комплексы рения, рутения, осмия, родия и иридия

Гидридные комплексы рутения

Кинетические характеристики реакций замещения и обмена лигандов в комплексах рутения (П)

Комплексы железа и рутения

Комплексы родия, иридия, рутения, осмия и рения

Комплексы рутения(Ш) и осмия(Ш)

Норборнадиена комплексы с рутением

Олефиновые комплексы переходных рутения

Рутений

Рутений ацетиленовые комплексы

Рутений галогенсодержащие комплекс

Рутений изонитрильные комплексы

Рутений рутений

Рутения комплексы алкильные

Рутения комплексы ареновые арильные

Рутения комплексы енильные

Рутения комплексы олефиновые

Рутения комплексы с бензолом

Рутения комплексы циклогексадиенильные

Рутения комплексы циклогексадиеновые

Рутения трихлорид, трифенилфосфиновый комплекс

Фенантролиновые комплексы с рутением

Фосфиновые комплексы рутения и осмия

Циклопентадиенильные комплексы рутения



© 2025 chem21.info Реклама на сайте